## ECE 461/661-Test \#2: Name

Feedback and Root Locus - Fall 2022

## Root Locus

1) The root locus of $G(s)$ is shown below.

$$
G(s)=\left(\frac{10(s-1+j 2)(s-1-j 2)}{s(s+3)(s+6)(s+3+j 4)(s+3-j 4)}\right)
$$

Determine the following

| Approach Angle to the ero at $+1+\mathrm{j} 2$ | Departure Angle from the pole at $-3+\mathrm{j} 4$ | Real Axis Loci |
| :---: | :---: | :---: |
| $\mathbf{- 1 3 4 . 3 0 9 7} \mathbf{~ d e g}$ | $\mathbf{9 7 . 1 2 5}$ deg | $\mathbf{( 0 , - 3 ) , ( - 6 , ~ - i n f )}$ |
| Breakaway Point (approx) | Asymptotes | jw Crossing(s) |
| $\mathbf{s}=\mathbf{- 0 . 7 4 0 6}$ | $+/-60$ degrees, 180 degrees <br> intercept $=-17 / 3$ | $\mathbf{j 1 . 2 7 2 3 , ~} \mathbf{j 1 0 . 8 9 3 5}$ |



## Gain Compensation

2) Determine the gain $(\mathrm{K}(\mathrm{s})=\mathrm{k})$ so that the feedback system has $60 \%$ overshoot for a step input. Also determine the closed-loop dominant pole(s) and error constant, Kp

$$
G(s)=\left(\frac{100}{(s+1)(s+5)(s+6)(s+7)}\right)
$$



| k <br> $60 \%$ overshoot | Closed-Loop dominant pole(s) | Kp <br> Error Constant |
| :---: | :---: | :---: |
| $\mathbf{9 . 0 2 7 5}$ | $\mathbf{s}=\mathbf{- 0 . 5 5 4 8}+\mathbf{j 3 . 4 1 0 3}$ | $\mathbf{4 . 3}$ |

zeta $=0.1605, \quad$ angle $=80.76$ degrees,$\quad \tan ($ angle $)=6.15$

$$
K_{p}=(G K)_{s=0}=\left(\frac{100}{(s+1)(s+5)(s+6)(s+7)}\right)_{s=0} \cdot 9.0275=4.2988
$$



## Lead/PI Compensation

3) Design a compensator, $K(s)$, so that the closed-loop system has

- No error for a step input

- Closed-Loop dominant poles at $\mathrm{s}=-1+\mathrm{j} 3$, and
- Finite gain as $s \rightarrow \infty$ (i.e. have at least as many poles as zeros)

$$
G(s)=\left(\frac{100}{(s+1)(s+5)(s+6)(s+7)}\right)
$$

Let

$$
K(s)=k\left(\frac{(s+1)(s+5)}{s(s+a)}\right)
$$

Pick 'a' so that the angles add up to 180 degrees at $\mathrm{s}=-1+\mathrm{j} 3$

$$
G K=\left(\frac{100 k}{s(s+a)(s+6)(s+7)}\right)
$$

Analyzing what we know

$$
\left(\frac{100}{s(s+6)(s+7)}\right)_{s=-1+j 3}=0.8085 \angle-165.9638^{0}
$$

For the angles to add to 180 degrees

$$
\begin{aligned}
& \angle(s+a)=14.0362^{0} \\
& a=\left(\frac{3}{\tan \left(14.0362^{0}\right)}\right)+1=13.0000
\end{aligned}
$$

To find k

$$
\begin{aligned}
& G K=\left(\frac{100 k}{s(s+6)(s+7)(s+13)}\right)_{s=-1+j 3}=0.0654 k \angle 180^{0} \\
& k=\frac{1}{0.0645}=15.300
\end{aligned}
$$

and

$$
K(s)=15.30\left(\frac{(s+1)(s+5)}{s(s+13)}\right)
$$



## Compensator Design (hardware)

4) Design a circuit to implement $\mathrm{K}(\mathrm{s})$

$$
K(s)=\left(\frac{40(s+5)(s+6)}{s(s+17)}\right)
$$

Rewrite as

$$
K(s)=\left(\frac{8(s+6)}{s+17}\right)\left(\frac{5(s+5)}{s}\right)
$$



