ECE 461/661-Test \#2: Name

Feedback and Root Locus - Fall 2022

Root Locus

1) The root locus of $\mathrm{G}(\mathrm{s})$ is shown below.

$$
G(s)=\left(\frac{10(s-1+j 2)(s-1-j 2)}{s(s+3)(s+6)(s+3+j 4)(s+3-j 4)}\right)
$$

Determine the following

Approach Angle to the zero at $+1+\mathrm{j} 2$	Departure Angle from the pole at $-3+\mathrm{j} 4$	Real Axis Loci
Breakaway Point (approx)	Asymptotes	jw Crossing(s)
	show on graph	

Gain Compensation

2) Determine the gain $(\mathrm{K}(\mathrm{s})=\mathrm{k})$ so that the feedback system has 60% overshoot for a step input. Also determine the closed-loop dominant pole(s) and error constant, Kp

$$
G(s)=\left(\frac{100}{(s+1)(s+5)(s+6)(s+7)}\right)
$$

k 60% overshoot	Closed-Loop dominant pole(s)	Kp Error Constant

Lead/PI Compensation

3) Design a compensator, $K(s)$, so that the closed-loop system has

- No error for a step input

- Closed-Loop dominant poles at $\mathrm{s}=-1+\mathrm{j} 3$, and
- Finite gain as $\mathrm{s} \rightarrow \infty$ (i.e. have at least as many poles as zeros)

$$
G(s)=\left(\frac{100}{(s+1)(s+5)(s+6)(s+7)}\right)
$$

Compensator Design (hardware)

4) Design a circuit to implement $\mathrm{K}(\mathrm{s})$

$$
K(s)=\left(\frac{40(s+5)(s+6)}{s(s+17)}\right)
$$

