ECE 461/661-Test \#3: Name

Digital Control \& Frequemncy Domain techniques - Fall 2022

s to z conversion

1) Determine the discrete-time equivalent for $\mathrm{G}(\mathrm{s})$. Assume a sampling rate of $\mathrm{T}=0.1$ second

$$
G(s)=\left(\frac{100(s+2)}{(s+5)(s+2+j 6)(s+2-j 6)}\right)
$$

Convert as $z=e^{s T}$

- $\mathrm{s}=-2 \mathrm{z}=0.8187$
- $\mathrm{s}=-5 \mathrm{z}=0.6065$
- $s=-2+j 6 \quad z=0.6757+0.4623 i$
- $\mathrm{s}=-2-\mathrm{j} 6 \mathrm{z}=0.6757-0.4623 \mathrm{i}$
so

$$
G(z)=k\left(\frac{z-0.8187}{(z-0.6065)(z-0.6757+j 0.4623)(z-0.6757-j 0.4623)}\right)
$$

To find k , match the gain at some frequency, like $\mathrm{s}=0$

$$
\begin{aligned}
& \left(\frac{100(s+2)}{(s+5)(s+2+j 6)(s+2-j 6)}\right)_{s=0}=1.000 \\
& k\left(\frac{z-0.8187}{(z-0.6065)(z-0.6757+j 0.4623)(z-0.6757-j 0.4623)}\right)_{z=1}=1.000 \\
& k=0.6921
\end{aligned}
$$

$$
G(z)=0.6921\left(\frac{z-0.8187}{(z-0.6065)(z-0.6757+j 0.4623)(z-0.6757-j 0.4623)}\right)
$$

Digital Compensators: K(z)

2) Assume a unity feedback system with a sampling rate of $T=0.1$ second

$$
G(z)=\left(\frac{100 z^{2}}{(z-0.95)(z-0.9)(z-0.8)}\right)
$$

Design a digital compensator, $\mathrm{K}(\mathrm{z})$, which results in

- No error for a step input,
- Closed-Loop Dominant poles at $\mathrm{z}=0.8+\mathrm{j} 0.2$, and
- Is causal (the number of poles in $\mathrm{K}(\mathrm{z})$ is equal to or greater than the number of zeros)

Let

$$
K(z)=k\left(\frac{(z-0.95)(z-0.9)}{(z-1)(z-a)}\right)
$$

so

$$
G K=\left(\frac{100 k \cdot z^{2}}{(z-1)(z-0.8)(z-a)}\right)
$$

Evaluate what we know at $\mathrm{z}=0.8+\mathrm{j} 0.2$

$$
\left(\frac{100 \cdot z^{2}}{(z-1)(z-0.8)}\right)_{z=0.8+j 0.2}=1.202 \angle+163^{0}
$$

The phase is past -180 degrees, so we need another zero. Let

$$
\begin{aligned}
& K(z)=k\left(\frac{(z-0.95)(z-0.9)(z-0.8)}{(z-1)(z-a)^{2}}\right) \\
& G K=\left(\frac{100 k \cdot z^{2}}{(z-1)(z-a)^{2}}\right)
\end{aligned}
$$

Evaluate what we know

$$
\left(\frac{100 \cdot z^{2}}{(z-1)(z-0.8)}\right)_{z=0.8+j 0.2}=240.4163 \angle-106.92^{0}
$$

For the angle to add up to 180 degrees

$$
\begin{aligned}
& \angle(z-a)^{2}=73.0725^{0} \\
& \angle(z-a)=36.5362^{0} \\
& a=0.8-\left(\frac{0.2}{\tan \left(35.5362^{0}\right)}\right)=0.5301
\end{aligned}
$$

SO

$$
K(z)=k\left(\frac{(z-0.95)(z-0.9)(z-0.8)}{(z-1)(z-0.5301)^{2}}\right)
$$

To find k

$$
\begin{aligned}
& G K=\left(\frac{100 k \cdot z^{2}}{(z-1)(z-0.5301)^{2}}\right)_{z=0.8+j 0.2}=2130.2038 k \angle 180^{0} \\
& k=\frac{1}{2130.2038}=0.0004694
\end{aligned}
$$

and

$$
K(z)=0.0004694\left(\frac{(z-0.95)(z-0.9)(z-0.8)}{(z-1)(z-0.5301)^{2}}\right)
$$

3) Bode Plots

Determine the system, $\mathrm{G}(\mathrm{s})$, which has the following gain vs. frequency

There are two zeros left of 0.1 (assume $s=0$)

There are two poles at $0.5 \mathrm{rad} / \mathrm{sec}$

$$
\begin{aligned}
& \frac{1}{2 \zeta}=5 d B=1.7783 \\
& \zeta=0.2812 \\
& \theta=73.67^{0}
\end{aligned}
$$

There are two poles at $20 \mathrm{rad} / \mathrm{sec}$

$$
\begin{aligned}
& \frac{1}{2 \zeta}=0 d B=1 \\
& \zeta=0.5 \\
& \theta=60^{0}
\end{aligned}
$$

So

$$
G(s)=k\left(\frac{s^{2}}{\left(s+0.5 \angle \pm 73.67^{0}\right)\left(s+20 \angle \pm 60^{0}\right)}\right)
$$

To find k , match the gain at some frequency, such as $3 \mathrm{rad} / \mathrm{sec}$

$$
\begin{aligned}
& G(j 3)=18 d B=7.94 \\
& k\left(\frac{s^{2}}{\left(s+0.5 \angle \pm 73.67^{0}\right)\left(s+20 \angle \pm 60^{0}\right)}\right)_{s=j 3}=7.94 \\
& k=3067.8
\end{aligned}
$$

and

$$
G(s) \approx\left(\frac{3067.7 \cdot s^{2}}{\left(s+0.5 \angle \pm 73.67^{0}\right)\left(s+20 \angle \pm 60^{0}\right)}\right)
$$

There are two poles at $20 \mathrm{rad} / \mathrm{sec}$

4) Nichols Charts

Assume a unity feedback system where the gain of $G(s)$ is as follows:

Determine

- The maximum gain, k , for stability
- k that results in a resonance of $\mathrm{Mm}=2.5$

frequency $(\mathrm{rad} / \mathrm{sec})$	7	8	9	10	12
Gain	10 dB	8 dB	2 dB	-3 dB	-11 dB
Phase (degrees)	-130 deg	-150 deg	-170 deg	-190 deg	-210 deg

5) Analog Compensator (Bode Plots)

Assume a unity feedback system with

$$
G(s)=\left(\frac{10}{(s+2)(s+10)(s+12)}\right)
$$

Determine a compensator, $K(s)$, which results in

- No error for a step input
- A phase margin of 40 degrees
- A 0 dB gain frequency of $4 \mathrm{rad} / \mathrm{sec}$

Let

$$
\begin{aligned}
& K(s)=k\left(\frac{(s+2)(s+10)}{s(s+a)}\right) \\
& G K=\left(\frac{10 k}{s(s+12)(s+a)}\right)
\end{aligned}
$$

Analyze what we know at $4 \mathrm{rad} / \mathrm{sec}$

$$
\begin{aligned}
& G K(j 4)=1 \angle-140^{0} \quad \begin{array}{l}
\text { definition of a } 40 \text { degree phase margin with } \\
\text { a OdB gain frequency of } 4 \mathrm{rad} / \mathrm{sec}
\end{array} \\
& \left(\frac{10}{s(s+12)}\right)_{s=j 4}=0.1976 \angle-108.4349^{0}
\end{aligned}
$$

For the angle to be -140 degrees

$$
\begin{aligned}
& \angle(s+a)=31.5651^{0} \\
& a=\left(\frac{4}{\tan \left(31.5651^{0}\right)}\right)=6.510 \varepsilon
\end{aligned}
$$

and

$$
G K=\left(\frac{10 k}{s(s+6.5108)(s+12)}\right)_{s=j 4}=0.0259 k \angle-140^{0}
$$

meaning

$$
k=\frac{1}{0.0259}=38.6626
$$

and

$$
K(s)=38.6626\left(\frac{(s+2)(s+10)}{s(s+6.5108))}\right)
$$

note: this also works (cancel all three poles)

$$
K(s)=35.8330\left(\frac{(s+2)(s+10)(s+12)}{s(s+8.5780)^{2}}\right)
$$

