Homework \#4: ECE 461 / 661

1st and 2nd Order Approximations. Due Monday, September 12th

LaPlace Transforms (Due September 12th)

1) Assume X and Y are related by the following transfer function

$$
Y=\left(\frac{5(s+2)}{(s+3)(s+4)(s+5)}\right) X
$$

a) What is the differential equation relating X and Y ?

Multiply out and cross multiply

$$
\left(s^{3}+12 s^{2}+47 s+60\right) Y=(5 s+10) X
$$

'sY' means 'the derivative of $y(t)$ '

$$
y^{\prime \prime \prime}+12 y^{\prime \prime}+47 y^{\prime}+60 y=5 x^{\prime}+10 x
$$

b) Determine $y(t)$ assuming

$$
x(t)=4 \cos (2 t)+3 \sin (2 t)
$$

Use phasor analysis

$$
\begin{aligned}
& s=j 2 \\
& X=4-j 3 \\
& Y=\left(\frac{5(s+2)}{(s+3)(s+4)(s+5)}\right) X \\
& Y=\left(\frac{5(s+2)}{(s+3)(s+4)(s+5)}\right)_{s=j 2} \cdot(4-j 3)
\end{aligned}
$$

$$
Y=0.2255-\mathrm{j} 0.7825
$$

convert back to time

$$
y(t)=0.2255 \cos (2 t)+0.7825 \sin (2 t)
$$

c) Determine $y(t)$ assuming $x(t)$ is a unit step input

$$
\begin{aligned}
& x(t)=u(t) \\
& Y=\left(\frac{5(s+2)}{(s+3)(s+4)(s+5)}\right) X
\end{aligned}
$$

Replace $\mathrm{x}(\mathrm{t})$ with it's LaPlace transform, X

$$
Y=\left(\frac{5(s+2)}{(s+3)(s+4)(s+5)}\right)\left(\frac{1}{s}\right)
$$

Use partial fractions

$$
Y=\left(\frac{0.1667}{s}\right)+\left(\frac{0.8333}{s+3}\right)+\left(\frac{-2.5}{s+4}\right)+\left(\frac{1.5}{s+5}\right)
$$

Take the inverse LaPlace transform

$$
y(t)=\left(0.1667+0.8333 e^{-3 t}-2.5 e^{-4 t}+1.5 e^{-5 t}\right) u(t)
$$

2) Assume X and Y are related by the following transfer function:

$$
Y=\left(\frac{300}{(s+1+j 4)(s+1-j 4)(s+15)}\right) X
$$

a) Use 2nd-order approximations to determine

- The 2% settling time
- The percent overshoot for a step input
- The steady-state output for a step input $(\mathrm{x}(\mathrm{t})=\mathrm{u}(\mathrm{t}))$

The dominant poles are at

$$
s=-1 \pm j 4=-4.123 \angle 75.964^{0}
$$

This gives

$$
\begin{aligned}
& T_{s}=\left(\frac{4}{1}\right)=4 \text { seconds } \\
& \zeta=\cos \theta=0.2425 \\
& O S=\exp \left(\frac{-\pi \zeta}{\sqrt{1-\zeta^{2}}}\right)=45.59 \% \\
& \text { DC Gain }=\left(\frac{300}{(s+1+j 4)(s+1-j 4)(s+15)}\right)_{s=0}=1.1765
\end{aligned}
$$

b) Check your answers using the 3rd order model and Matlab, Simulink, of VisSim (your pick)

```
>> G = zpk([],[-15,-1+j*4,-1-j*4],300)
            30
(s+15) (s^2 + 2s + 17)
>> DC = evalfr(G,0)
DC = 1.1765
>> t = [0:0.01:6]';
>> y = step(G,t);
>> plot(t,y);
>> xlabel('Time (seconds');
>> max(y) / DC
ans = 1.4380
```

System actually has 43.8% overshoot

- 45.59% calculated

3) Determine the transfer function for a system with the following step response:

This is a 1st-order system (no oscillations), so $\mathrm{G}(\mathrm{s})$ is of the form

$$
G(s)=\left(\frac{a}{s+b}\right)
$$

Pull two pieces of information from the graph

$$
\text { DC gain }=2.8=\mathrm{a} / \mathrm{b}
$$

$$
2 \% \text { settling time }=70 \mathrm{~ms}(\text { approx })
$$

$$
T_{s}=70 \mathrm{~ms}=\frac{4}{b}
$$

$$
b=57.14
$$

$$
a=2.8 b=160
$$

$$
G(s) \approx\left(\frac{160}{s+57.14}\right)
$$

4) Determine the transfer function for a system with the following step response:

This is a 2 nd-order system (oscillates), so $\mathrm{G}(\mathrm{s})$ is of the form

$$
G(s)=\left(\frac{a}{s^{2}+b s+c}\right)=\left(\frac{a}{\left(s+\sigma+j \omega_{d}\right)\left(s+\sigma-j \omega_{d}\right)}\right)
$$

Pull three pieces of information from the graph
DC gain $=1.6$
Frequency of oscillation is 1 cycle every 92 ms

$$
\omega_{d}=2 \pi\left(\frac{1 \text { cycle }}{92 m s}\right)=68.29
$$

2% settling time $=160 \mathrm{~ms}$ (approx)

$$
\sigma=\left(\frac{4}{160 m s}\right)=25
$$

So

$$
G(s) \approx\left(\frac{a}{(s+25+j 68.29)(s+25-j 68.29)}\right)
$$

Pick 'a' to make the DC gain 1.6

$$
G(s) \approx\left(\frac{14,807}{(s+25+j 68.29)(s+25-j 68.29)}\right)
$$

