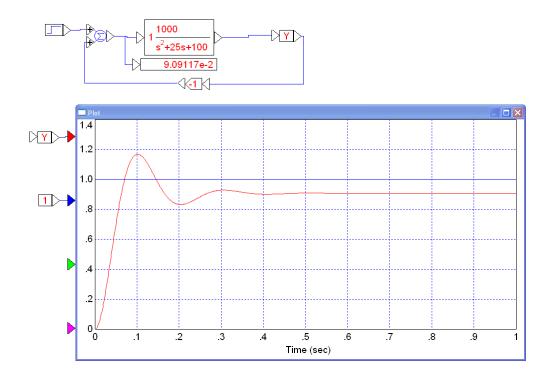
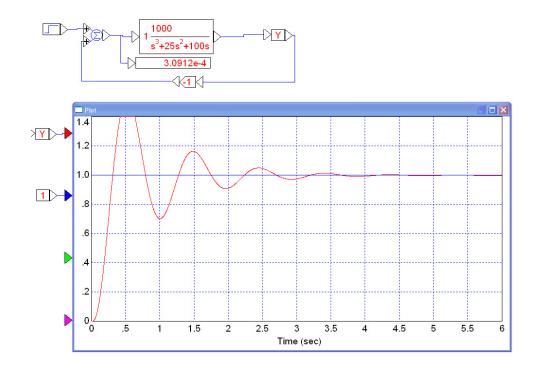
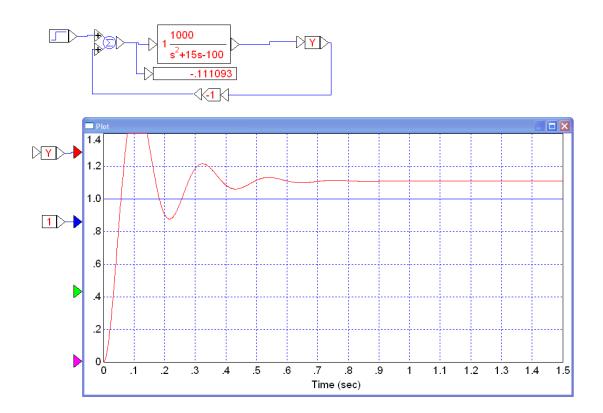
Homework #7: ECE 461/661


Error Constants, Routh Criteria, Skething a Root Locus. Due Monday, October 10th


Error Constants

1) Determine the error constants and steady-state error for the following systems


G(s)	System Type	Кр	Kv	Error for a unit step input
$\left(\frac{1000}{(s+5)(s+20)}\right)$	0	10	0	1/11
$\left(\frac{1000}{s(s+5)(s+20)}\right)$	1	infinity or n/a	10	0
$\left(\frac{1000(s+1)}{s^2(s+5)(s+20)}\right)$	2	infinity or n/a	infinity or n/a	0
$\left(\frac{1000}{(s-5)(s+20)}\right)$	0	-10	0	-1/9

a) error = 1/11

d) error = -1/9

Routh Criteria

Determine the range of k that results in a negative definite polynomial (i.e. a stable system)

2)
$$(s-1)(s+8)(s+10) + 2k = 0$$

multiply out

$$s^3 + 17s^2 + 62s + (2k - 80) = 0$$

1	62	0
17	2k-80	0
66.7059 - 0.1176k (a)	0 (b)	0
2k-80 (c)	0	0
0	0	0

range of k

k < 567.00

k > 40.00

ans: 40 < k < 567

$$\frac{-\left|\begin{array}{cc} 1 & 62 \\ 17 & 2k - 80 \end{array}\right|}{17} = 66.7059 - 0.1176k$$

(b)

$$\frac{-\left|\begin{array}{cc}1&0\\17&0\end{array}\right|}{17}=0$$

(c)

$$\frac{-\begin{vmatrix} 17 & 2k-80 \\ 66.70-0.1176k & 0 \end{vmatrix}}{66.70-0.1176k} = 2k - 80$$

3)
$$(s+1)(s+6)(s+8)(s+10) + 2k = 0$$

Multiply out

$$s^4 + 25s^3 + 212s^2 + 668s + 2k + 480 = 0$$

1	212	2k+480
25	668	0
185.28 (a)	2k + 480 (b)	0
732.7668 - 0.2699k (c)	0 (d)	0
2k + 480	0	0
0	0	0

range of k

k < 2235.34

k > -240

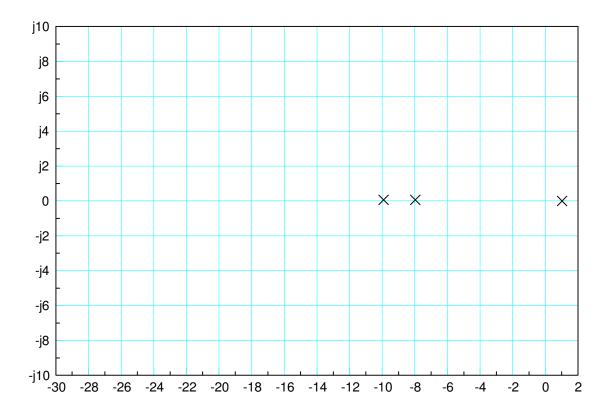
ans: 240 < k < 2235.34

$$\frac{-\left|\begin{array}{cc} 1 & 212 \\ 25 & 668 \end{array}\right|}{25} = 185.28$$

(b)

$$\frac{-\left|\begin{array}{cc} 1 & 2k+480 \\ 25 & 0 \end{array}\right|}{23} = 2k + 480$$

(c)


$$\frac{-\begin{vmatrix} 25 & 668 \\ 185.28 & 2k+480 \end{vmatrix}}{185.28} = 603.2332 - 0.2699k$$

Sketching a Root Locus

Sketch the root locus plot for the following systems for 0 < k < infinity. Also plot the

• real axis loci, break away points, jw crossings (if any), and asymptotes

4)
$$(s-1)(s+8)(s+10) + 2k = 0$$

Real Asix Loci

$$(+1, -8), (-10, -infinity)$$

Asymptotes

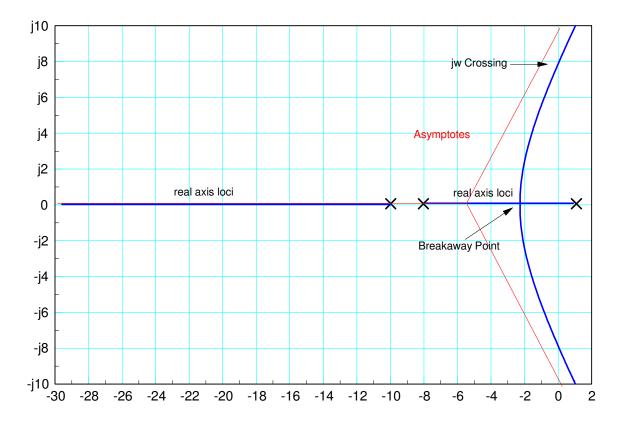
3 asymptotes

+/- 60 degrees, 180 degrees

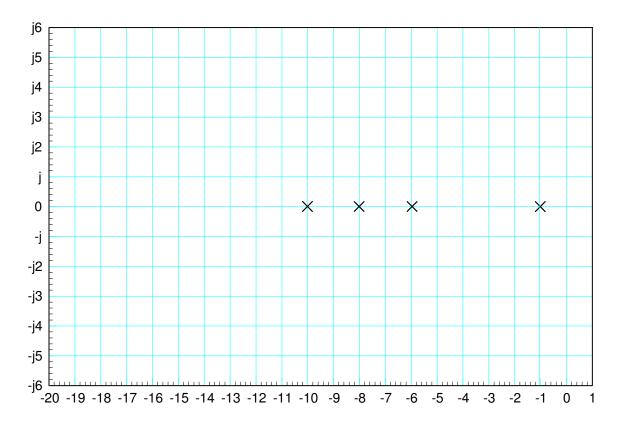
intersect = -17/3

Breakaway Point

$$s = -2.2829$$


found numerically by searching along the line s = x + j0.1

jw Crossing


$$s = j7.8739$$

found numerically by searching along the line s = jx

Resulting Root Locus:

5) (s+1)(s+6)(s+8)(s+10) + 2k = 0

Real Axis Loci

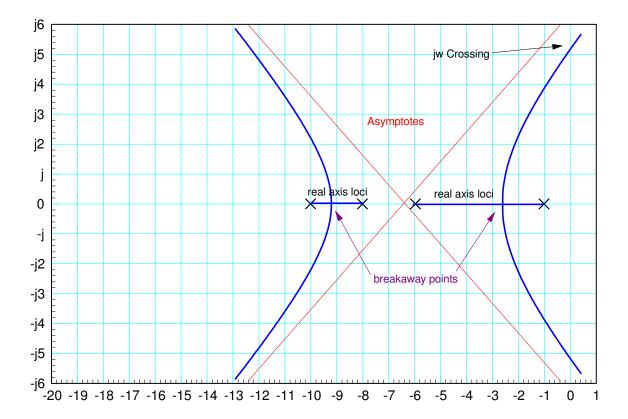
Asymptotes

4 asymptotes

+/- 45 degrees, +/- 135 degrees

intersect = -25/4

Breakaway Points

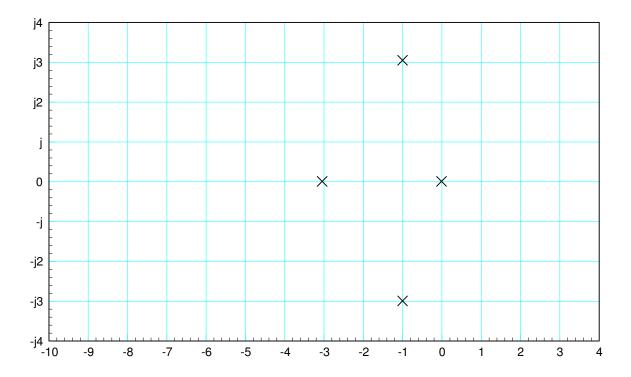

s = -2.6186 found numerically by searching along the line s = x + j0.1

s = -9.2094

jw Crossing

s = j5.1691 found numerically by searching along the line s = jx

Resulting root locus



Root Locus with Complex Poles & Zeros

Sketch the root locus plot for the following systems for 0 < k < infinity. Also plot the

• real axis loci, break away points, jw crossings (if any), asymptotes, and departure/approach angle

6)
$$G(s) = \left(\frac{10}{s(s+3)(s+1+j3)(s+1-j3)}\right)$$

Real Axis Loci

(0, -3)

Asymptotes

4 asymptotes

+/- 45 degrees, +/- 135 degrees

Intersect = -5/4

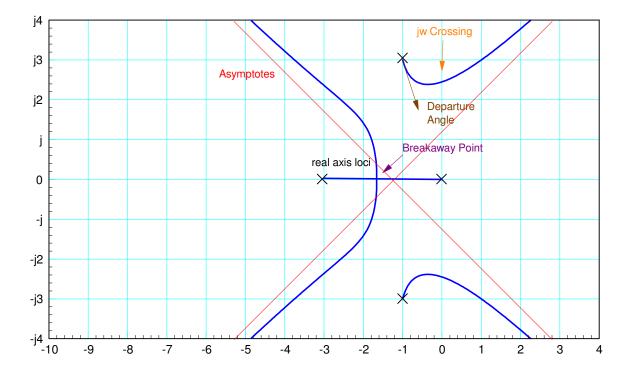
Departure Angle

-74.74 degrees

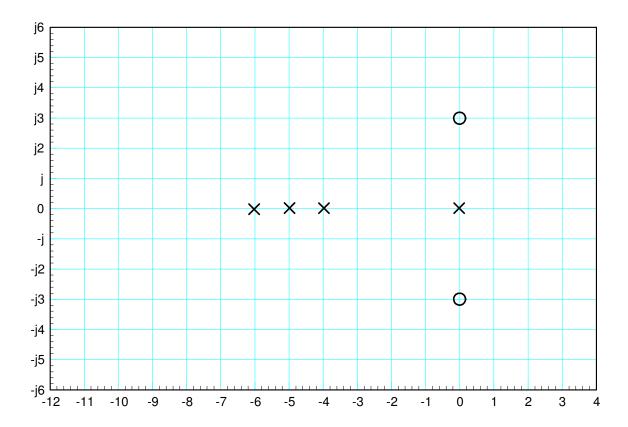
evaluate G(s) at s = -0.9999 + j3 (angle from the pole at -1+j3 is zero degrees)

 $resulting \ angle = 105.2591 \ degrees$

you need to add another 74.7049 degrees to get to 180 degrees (subtract a negagive 74.74 deg)


Breakaway Point

s = -1.6556 found using numerical methods by searching along the line s = x + j0.1


jw Crossing

s = j2.4495 found using numerical methods by searching along the line s = jx

Resulting Root Locus

7)
$$G(s) = \left(\frac{(s+j3)(s-j3)}{s(s+4)(s+5)(s+6)}\right)$$

Real Axis Loci

$$(0, -4), (-5, -6)$$

Asymptotes

4 poles - 2 zeros = 2 asymptotes

Angle = \pm 40 derees

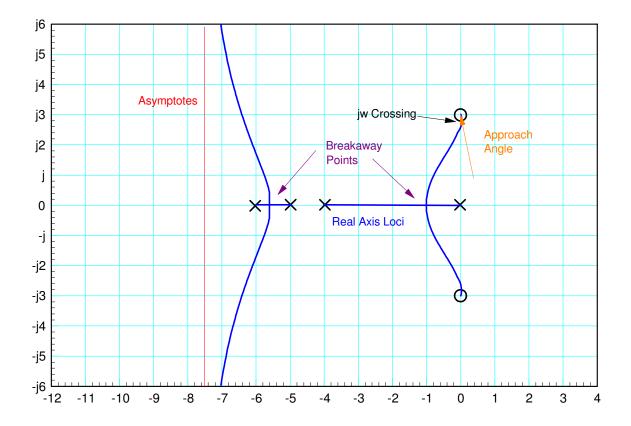
Intercept = -15/2

Breakaway Point

s = -1.0099 found numerically by searching along the line s = x + j0.1

jw Crossing

s = j2.8284 found numerically by searching along the line s = jx


Approach Angle

-85.6038 degrees

evaluate G(s) at s = 0.0001 + j3 (angle from zero at +j3 is zero degrees)

resulting angle is -94.3962 degrees

you need to subtract another 85.6038 degrees to make the net angle 180 degrees

