Homework \#9: ECE 461/661

Meeting Specs, Delays, Unstable Systems. Due Monday, October 24th 20 points per problem

Meeting Design Specs

1) Assume

$$
G(s)=\left(\frac{903}{(s+0.81)(s+5.20)(s+13.59)(s+25.25)}\right)
$$

Design a compensator, $\mathrm{K}(\mathrm{s})$, For the 4th-order model that results in

- No error for a step input
- A 2% settling time of 2 seconds, and
- 20% overshoot for the step response

Translation:

Make it a type-1 system
Place the closed-loop dominant pole at $\mathrm{s}=-2+\mathrm{j} 4$

Compensator Design:

Let K(s)

- Add two zeros, cancelling the slowest stable poles
- Add a pole at $\mathrm{s}=0$ to make it type- 1 , and
- Add another pole to push the root locus through $\mathrm{s}=-2+\mathrm{j} 4$

$$
K(s)=k\left(\frac{(s+0.81)(s+5.20)}{s(s+a)}\right)
$$

giving

$$
G K=\left(\frac{903 k}{s(s+13.59)(s+25.25)(s+a)}\right)
$$

Analyze what we know

$$
\left(\frac{903}{s(s+13.59)(s+25.25)}\right)_{s=-2+j 4}=0.6981 \angle-145.3677^{0}
$$

For the angles to add up to 180 degrees,

$$
\begin{aligned}
& \angle\left(\frac{1}{s+a}\right)=-34.6323^{0} \\
& \angle(s+a)=34.63 .23^{0}
\end{aligned}
$$

Doing some trig

$$
a=\left(\frac{4}{\tan \left(34.6323^{0}\right)}\right)+2
$$

So, $K(s)$ and GK are

$$
\begin{aligned}
& K(s)=k\left(\frac{(s+0.81)(s+5.20)}{s(s+7.7913)}\right) \\
& G K=\left(\frac{930 k}{s(s+7.7913)(s+13.59)(s+25.25)}\right)
\end{aligned}
$$

To find k , at any point on the root locus

$$
\begin{aligned}
& G K=-1 \\
& \left(\frac{903 k}{s(s+7.7913)(s+13.59)(s+25.25)}\right)_{s=-2+j 4}=0.0992 k \angle 180^{0} \\
& k=\frac{1}{0.0992}=10.0827 \\
& K(s)=10.0827\left(\frac{(s+0.81)(s+5.20)}{s(s+7.7913)}\right)
\end{aligned}
$$

Check your design in Matlab or Simulink or VisSim

Give an op-amp circuit to implement K (s)

$$
K(s)=10.0827\left(\frac{(s+0.81)(s+5.20)}{s(s+7.7913)}\right)
$$

Rewrite as

$$
K(s)=5.0414\left(\frac{s+5.20}{s+7.7913}\right) \cdot 2\left(\frac{s+0.81}{s}\right)
$$

Systems with Delays

2) Assume a 100 ms delay is added to the system

$$
G(s)=\left(\frac{903}{(s+0.81)(s+5.20)(s+13.59)(s+25.25)}\right) e^{-0.1 s}
$$

Design a compensator, $K(s)$, For the 4th-order model that results in

- No error for a step input
- A 2% settling time of 2 seconds, and
- 20% overshoot for the step response

Same as problem \#1. Let

$$
\begin{aligned}
& K(s)=k\left(\frac{(s+0.81)(s+5.20)}{s(s+a)}\right) \\
& G K=\left(\frac{903 k}{s(s+a)(s+13.59)(s+25.25)}\right) e^{-0.1 s}
\end{aligned}
$$

Evaluate what we know:

$$
\left(\left(\frac{903}{s(s+13.59)(s+25.25)}\right) e^{-0.1 s}\right)_{s=-2+j 4}=0.8526 k \angle-168.2860^{0}
$$

For the angle to add up to 180 degrees

$$
\begin{aligned}
& \angle(s+a)=11.7140^{0} \\
& a=\left(\frac{4}{\tan \left(11.7140^{0}\right)}\right)+2 \\
& a=21.2915
\end{aligned}
$$

This results in

$$
\begin{aligned}
& \left(\left(\frac{903 k}{s(s+21.2915)(s+13.59)(s+25.25)}\right) e^{-0.1 s}\right)_{s=-2+j 4}=-1 \\
& 0.0433 k \angle 180^{0}=-1
\end{aligned}
$$

$$
k=\frac{1}{0.0433}=23.1074
$$

and

$$
K(s)=23.1074\left(\frac{(s+0.81)(s+5.20)}{s(s+21.2915)}\right)
$$

Check your design in Matlab or Simulink or VisSim

Give an op-amp circuit to implement $\mathrm{K}(\mathrm{s})$

$$
K(s)=23.1074\left(\frac{(s+0.81)(s+5.20)}{s(s+21.2915)}\right)
$$

Rewrite as

$$
K(s)=11.5537\left(\frac{s+5.20}{s+21.2915}\right) \cdot 2\left(\frac{s+0.81}{s}\right)
$$

Unstable Systems

3) Assume the slow pole was unstable

$$
G(s)=\left(\frac{903}{(s-0.81)(s+5.20)(s+13.59)(s+25.25)}\right)
$$

Design a compensator, $K(s)$, For the 4th-order model that results in

- No error for a step input
- A 2% settling time of 2 seconds, and
- 20% overshoot for the step response

Check your design in Matlab or Simulink or VisSim

Step 1: Stabilize the system. Let

$$
K_{1}(s)=k
$$

Place the closed-loop dominant pole at $\mathrm{s}=-1$ (arbitrary)

$$
\begin{aligned}
& \left(\frac{903}{(s-0.81)(s+5.20)(s+13.59)(s+25.25)}\right)_{s=-1}=-0.3891 \\
& k=\frac{1}{0.3891}=2.5073
\end{aligned}
$$

Now find the closed-loop system. In Matlab

```
>> G = zpk([],[0.81,-5.20,-13.59,-25.25],903)
        903
(s-0.81) (s+5.2) (s+13.59) (s+25.25)
>> k1 = 2.5703;
>> G2 = minreal(G*k1 / (1 + G*k1))
            2320.9809
------------------------------------
(s+1) (s+2.343) (s+15.05) (s+24.84)
```

Now design a second feedback system to meet the design specs. Let

$$
\begin{aligned}
& K_{2}=k\left(\frac{(s+1)(s+2.343)}{s(s+a)}\right) \\
& G_{2} K_{2}=\left(\frac{2320.9809 k}{s(s+a)(s+15.05)(s+24.84)}\right)
\end{aligned}
$$

Evaluate what we know at $\mathrm{s}=-2+\mathrm{j} 4$

$$
\left(\frac{2320.9809}{s(s+15.05)(s+24.84)}\right)_{s=-2+j 4}=1.6398 \angle-143.5396^{0}
$$

For the total angle to add up to 180 degrees

$$
\begin{aligned}
& \angle(s+a)=36.4604^{0} \\
& a=\left(\frac{4}{36.4604^{0}}\right)+2=7.4135
\end{aligned}
$$

To find k

$$
G_{2} K_{2}=\left(\frac{2320.9809 k}{s(s+7.4135)(s+15.05)(s+24.84)}\right)_{s=-2+j 4}=0.2436 k \angle 180^{0}
$$

k is then

$$
k=\frac{1}{0.2436}=4.1047
$$

and

$$
K_{2}=4.1047\left(\frac{(s+1)(s+2.343)}{s(s+7.4135)}\right)
$$

Checking in VisSim

