Bode Plots. Nichols charts and gain \& lead compensation. Due Monday, November 22nd

Bode Plots

1) Determine the system, $G(s)$, with the following gain vs. frequency

Step 1: Draw in the asymptotes. Make sure they are multiples of $20 \mathrm{~dB} /$ decade (showin in orange)

Each corner corresponds to a pole

$$
G(s) \approx\left(\frac{k}{(s+0.5)(s+2.3)(s+11)}\right)
$$

Pick ' k ' to match the gain at some frequency. At $\mathrm{s}=0$ (off the chart to the left)

$$
\begin{aligned}
& G(s=0)=30 d B=10^{30 / 20}=31.622 \\
& \left(\frac{k}{(s+0.5)(s+2.3)(s+11)}\right)_{s=0}=31.622 \\
& k=400.03
\end{aligned}
$$

giving

$$
G(s) \approx\left(\frac{400.03}{(s+0.5)(s+2.3)(s+11)}\right)
$$

2) Determine the system, $G(s)$, with the following gain vs. frequency

Gain (dB)

Step 1: Draw the asymptotes at multiples of $20 \mathrm{~dB} /$ decade (shown in orange)

Each corner is a pole (gain drops) or a zero (gain increases)

Step 2: Determine the angle of the poles (the damping ratio)
At $0.8 \mathrm{rad} / \mathrm{sec}$

$$
\begin{aligned}
& \frac{1}{2 \zeta}=11 d B=10^{11 / 20}=3.5481 \\
& \zeta=0.1409 \\
& \theta=\arccos (\zeta)=81.89^{0}
\end{aligned}
$$

At $12 \mathrm{rad} / \mathrm{sec}$

$$
\begin{aligned}
& \frac{1}{2 \zeta}=16 d B=10^{16 / 20}=6.3096 \\
& \zeta=0.0793 \\
& \theta=\arccos (\zeta)=85.45^{0}
\end{aligned}
$$

$\mathrm{G}(\mathrm{s})$ is then

$$
G(s) \approx\left(\frac{k s^{2}}{\left(s+0.8 \angle \pm 81.89^{\circ}\right)\left(s+12 \angle \pm 85.45^{\circ}\right)}\right)
$$

To find k , match the gain at some frequency.
At $\mathrm{s}=\mathrm{j} 3,|\mathrm{G}(\mathrm{s})|=+9 \mathrm{~dB}$ (from the graph)

$$
G(s) \approx\left(\frac{k s^{2}}{\left(s+0.8 \angle \pm 81.89^{0}\right)\left(s+12 \angle \pm 85.45^{0}\right)}\right)_{s=j 3}=9 d B=10^{9 / 20}=2.8184
$$

Using the Bode approximation (the straignt line asymptotes), at $3 \mathrm{rad} / \mathrm{sec}$

$$
\begin{aligned}
& G(j 3) \approx\left(\frac{k .3^{2}}{(3)(3)(12)(12)}\right)=\frac{k}{12^{2}}=2.8184 \\
& k=405.84
\end{aligned}
$$

$$
G(s) \approx\left(\frac{105.84 \cdot s^{2}}{\left(s+0.8 \angle \pm 81.89^{0}\right)\left(s+12 \angle \pm 85.45^{0}\right)}\right)
$$

Nichols Charts

3) The gain vs. frequency of a system is measured

$\mathrm{w}(\mathrm{rad} / \mathrm{sec})$	2	3	4	5	6	10
Gain (dB)	1.73	-2.62	-6.13	-9.19	-11.93	-21.03
Phase (deg)	-125	-141	-154	-167	-178	-213

Using this data

- Transfer it to a Nichols chart
- Determine the maximum gain that results in a stable system
- Determine the gain, k , that results in a maximum closed-loop gain of $\mathrm{Mm}=1.5$

Step 1: Transfer the data to a Nichols chart

- Lower blue line below

Max Gain for Stability:

- When the phase is 180 degrees, the gain must be less than one
- $\mathrm{k}<12.5 \mathrm{~dB}$

Gain for $\mathrm{Mm}=1.5$

- Slide G(jw) up until you're tangent to the M-circle
- Upper blue line below
- $\mathrm{k}=1.315$

Gain and Lead Compensation

Problem 4 \& 5) Assume

$$
G(s)=\left(\frac{903}{s(s+5.20)(s+13.59)(s+25.25)}\right)
$$

4) Design a gain compensator that results in a 50 degree phase margin.

- Check the resulting step response in Matlab

Translation: At some frequency

$$
G k(j \omega)=1 \angle-130^{0}
$$

Search $\mathrm{s}=\mathrm{jw}$ until the phase is -130 degrees

$$
G(j 2.3857)=0.1890 \angle-130^{0}
$$

so

$$
k=\frac{1}{0.1890}=5.2896
$$

Step Response
50 degree phase margin means...

$$
M_{m} \approx\left|\frac{1 \angle-130^{0}}{1+1 \angle-130^{0}}\right|=1.1831
$$

Which means

$$
\begin{aligned}
& M_{m}=\frac{1}{2 \zeta \sqrt{1-\zeta^{2}}}=1.1831 \\
& \zeta=0.4825
\end{aligned}
$$

Which means

$$
O S=\exp \left(\frac{-\pi \zeta}{\sqrt{1-\zeta^{2}}}\right)=17.72 \%
$$

Checking in Matlab

```
>> G = zpk([],[0,-5.20,-13.59,-25.25],903);
>> k = 5.2896;
>> Gcl = minreal(G*k / (1 + G*k));
>> t = [0:0.01:5]';
>> y = step(Gcl,t);
>> plot(t,y)
>> DC = evalfr(Gcl, 0)
DC = 1.0000
>> OS = max(y) / DC
OS = 1.1820
>>
```


Step Response of Gain Compensator with a 50-degree Phase Margin
Overshoot is 18% (should be 17%)

Nichols Chart for a 50-degree Phase Margin
$\mathrm{G} * \mathrm{k}$ intersects the Mm circle at -130 degrees
5) Design a lead compensator that results in a 50 degree phase margin.

- Check the resulting step response in Matlab

$$
G(s)=\left(\frac{903}{s(s+5.20)(s+13.59)(s+25.25)}\right)
$$

From problem \#4, the resonance with gain compensation is at $2.3857 \mathrm{rad} / \mathrm{sec}$. To increase the phase margin, pick the zero of the lead compensator in the range of

$$
\text { zero }=(1 . .3) x\left(2.3857 \frac{\mathrm{rad}}{\mathrm{sec}}\right)
$$

$2.38<$ zero <7.24
Pick the zero to be $s=-5.20$ to cancel the pole (just like root locus). Let

$$
\begin{aligned}
& K(s)=k\left(\frac{s+5.20}{s+52}\right) \\
& G K=\left(\frac{903 k}{s(s+13.59)(s+25.25)(s+52)}\right)
\end{aligned}
$$

Search along the jw axis until the phase is -130 degrees

$$
\begin{aligned}
& G K(j 5.4478)=0.0084 \angle-130^{0} \\
& k=\frac{1}{0.0084}=119.29
\end{aligned}
$$

and

$$
K(s)=119.29\left(\frac{s+5.2}{s+52}\right)
$$

Plotting the step response

```
>> G = zpk([],[0,-5.20,-13.59,-25.25],903);
>> K = zpk(-5.2,-52,119.29)
119.29 (s+5.2)
--------------
    (s+52)
>> GKcl = minreal(G*K / (1 + G*K))
    107718.87
(s+33.89)(s+49.5) (s^2 + 7.444s + 64.2)
>> t = [0:0.01:5]';
>> y = step(GKcl, t);
>> DC = evalfr(GKcl, O)
DC = 1.0000
>> OS = max(y) / DC
OS = 1.1837
```


Step Response of Gain Compensator with a 50-degree Phase Margin Overshoot is 18% (should be 17%)

Nichols Chart for lead compensated system $\mathrm{G}(\mathrm{jw})$ intersects the M-circle at -130 degrees

Problem 6 \& 7) Assume a 200ms delay is added

$$
G(s)=\left(\frac{903}{s(s+5.20)(s+13.59)(s+25.25)}\right) e^{-0.2 s}
$$

6) Design a gain compensator that results in a 50 degree phase margin.

- Check the resulting step response in Matlab

Same procedure as before. Search along the jw axis until $\mathrm{G}(\mathrm{jw})$ has a phase of -130 degrees

$$
\begin{aligned}
& G(j 1.3941)=0.3483 \angle-130^{0} \\
& k=\frac{1}{0.3483}=2.8714
\end{aligned}
$$

Checking the step response in Matlab

```
>> G = zpk([],[0,-5.20,-13.59,-25.25],903);
>> [num,den] = pade(0.2, 4);
>> D = tf(num,den)
s^4 - 100 s^3 + 4500 s^2 - 1.05e005 s + 1.05e006
-------------------------------------------------------
s^4 + 100 s^3 + 4500 s^2 + 1.05e005 s + 1.05e006
>> k = 2.8714;
>> Gcl = minreal(G*D*k / (1 + G*D*k));
>> t = [0:0.01:5]';
>> y = step(Gcl, t);
>> max(y)
ans =
    1.1910
>> plot(t,y,'b',t,0*t+1,'r',t,0*t+1.172,'m')
>>
```


Step Response when $G(s)$ has a 200 ms delay (50 degree phase margin)
Overshoot $=19 \%$ (shoulr be 17\%)

Nichols chart for gain compensated system $\mathrm{G}(\mathrm{jw})$ intersects the M -circle at -130 degrees
7) Design a lead compensator that results in a 50 degree phase margin.

- Check the resulting step response in Matlab

$$
G(s)=\left(\frac{903}{s(s+5.20)(s+13.59)(s+25.25)}\right) e^{-0.2 s}
$$

From problem \#6, the resonance is at $1.3941 \mathrm{rad} / \mathrm{sec}$. This means you need to add phase at this frequency. Pick the zero of the lead compensator in the range of

$$
\begin{aligned}
& \text { zero }=(1 . .3) x\left(1.3931 \frac{\mathrm{rad}}{\mathrm{sec}}\right) \\
& 1.3941<\text { zero }<4.18
\end{aligned}
$$

Let the zero be $3 \mathrm{rad} / \mathrm{sec}$ (nice round number in this range)

$$
K(s)=k\left(\frac{s+3}{s+30}\right)
$$

giving

$$
G K=\left(\frac{903(s+3) k}{s(s+5.2)(s+13.59)(s+25.25)(s+30)(s+52)}\right) e^{-0.2 s}
$$

Search along the jw axis until the phase is -130 degrees

$$
\begin{aligned}
& G K(j 2.7630)=0.0213 \angle-130^{0} \\
& k=\frac{1}{0.0213}=46.883
\end{aligned}
$$

and

$$
K(s)=46.883\left(\frac{s+3}{s+30}\right)
$$

Checking the step response in Matlab

```
>> G = zpk([],[0,-5.20,-13.59,-25.25],903)
            903
s (s+5.2) (s+13.59) (s+25.25)
>> [num,den] = pade(0.2, 4);
>> D = tf(num,den)
s^4 - 100 s^3 + 4500 s^2 - 1.05e005 s + 1.05e006
------------------------------------------------------
s^4 + 100 s^3 + 4500 s^2 + 1.05e005 s + 1.05e006
>> K = zpk(-3,-30,46.883)
46.883 (s+3)
    (s+30)
>> Gcl = minreal(G*D*K / (1 + G*D*K));
>> t = [0:0.01:5]';
>> y = step(Gcl, t);
>> OS = max(y) / DC
OS = 1.2783
```

```
>> plot(t,y,'b',t,0*t+1,'r',t,0*t+1.172,'m')
>>
```


Step Response of Lead Compensated System with a 200 ms delay Overshoot $=28.8 \%($ vs 17\%)

Nichols Chart: G*D*K(jw) intersects the M-circle at -130 degeres

