Homework \#6: ECE 461/661

Mass-Spring Systems, Rotational Systems, DC Motors. Due Monday, September 25th

Mass Spring systems

1) (20pt) Draw the circuit equivalent for the following mass-spring systems.

- Express the dynamics in state-space form
- Find the transfer function from F to X2
- Plot the step response from F to X2

Problem 1
2) (20pt) Draw the circuit equivalent for the following mass-spring systems.

- Express the dynamics in state-space form
- Find the transfer function from F to X3

Plot the step response from F to X3

Rotational Systems

3) Draw the circuit equivalent for the following rotational system.

- Express the dynamics in state-space form
- Find the transfer function from T to Q1
- Plot the step response from T to Q1

Problem 3: $J=0.2 \mathrm{Kg} \mathrm{m} / \mathrm{s}^{\wedge} 2, B=0.1 \mathrm{Ns} / \mathrm{m}, \mathrm{K}=5 \mathrm{Nm} / \mathrm{rad}$

Motors

4) Find the dynamics for a AM80-300 DC Servo Motor. It's specs are

- $\mathrm{V}($ input $)=48 \mathrm{VDC}$
- $\mathrm{Ke}=14.1 \mathrm{~V} / \mathrm{krpm}$
- $\mathrm{Rt}=0.67$ Ohs
- Io = 0.50 Amps no load current @ 3404 rpm

When driving 1.01 Nm torque

- $\mathrm{Ia}=8.00 \mathrm{Amps}$
- w=3048 rpm
- Pout $=322$ Watts

Size $=50.00 \mathrm{~mm}$ diameter, 89.21 mm long, .
5) Assume this motor is used to power an electric bicycle at 20 mph

- Motor speed @ 20mph = 3048 rpm @ 322 Watts
- Gear (wheel) used to convert 3048 rpm to 20 mph
- Bicycle weight $=100 \mathrm{~kg}$

What is the gear reduction (wheel diameter) to convert 3048 rpm to 20 mph ?
What is the inertia relative to the DC servo motor (bring the 100 kg mass back to the motor through a gear)

What is the transfer function (dynamics) for the bicycle / servo motor combination?

