Homework \#10: ECE 461/661

z-Transforms

1) Determine the difference equation that relates X and Y

$$
Y=\left(\frac{0.05 z(z-1)}{(z-0.96)(z-0.92)(z-0.8)}\right) X
$$

2) Determine $y(k)$ assuming

$$
\begin{aligned}
Y=\left(\frac{0.05 z(z-1)}{(z-0.96)(z-0.92)(z-0.8)}\right) X \quad & x(t)=2 \cos (4 t)+3 \sin (4 t) \\
& T=0.01
\end{aligned}
$$

3) Determine $y(k)$ assuming

$$
Y=\left(\frac{0.05 z(z-1)}{(z-0.96)(z-0.92)(z-0.8)}\right) X \quad x(k)=u(k)
$$

sto z conversion

3) Determine the discrete-time equivalent of $\mathrm{G}(\mathrm{s})$. Assume $\mathrm{T}=0.1$ seconds
4) Determine the discrete-time equivalent of $\mathrm{G}(\mathrm{s})$. Assume $\mathrm{T}=0.01$ seconds

$$
G(s)=\left(\frac{9111}{(s+1.21)(s+9.02)(s+23.95)(s+44.67)}\right)
$$

Root Locus in the z-Domain

Assume $\mathrm{T}=0.1$ seconds.

$$
G(s)=\left(\frac{9111}{(s+1.21)(s+9.02)(s+23.95)(s+44.67)}\right)
$$

5) Draw the root locus for $G(z)$
6) Find k for no overshoot in the step response

- Simulate the closed-loop system's step response

7) Find k for 20% overshoot for a step response (damping ratio $=0.4559$)

- Simulate the closed-loop system's step response

8) Find k for a damping ratio of 0.00

- Simulate the closed-loop system's step response

