Homework \#4: ECE 461 / 661

1st and 2nd Order Approximations. Due Monday, September 11th

LaPlace Transforms

1) Assume X and Y are related by the following transfer function

$$
Y=\left(\frac{2 s+20}{(s+1)(s+3)(s+10)}\right) X
$$

a) What is the differential equation relating X and Y ?

Cross multiply and multiply out

$$
\begin{aligned}
& ((s+1)(s+3)(s+10)) Y=(2 s+20) X \\
& \left(s^{3}+14 s^{2}+43 s+30\right) Y=(2 s+20) X
\end{aligned}
$$

Note that 'sY' means 'the derivative of y '

$$
y^{\prime \prime \prime}+14 y^{\prime \prime}+43 y^{\prime}+30 y=2 x^{\prime}+20 x
$$

b) Determine $y(t)$ assuming

$$
x(t)=4 \cos (3 t)+2 \sin (3 t)
$$

Use phasor analysis

$$
\begin{aligned}
& s=j 3 \\
& X=4-j 2 \\
& Y=\left(\frac{2 s+20}{(s+1)(s+3)(s+10)}\right) X \\
& Y=\left(\frac{2 s+20}{(s+1)(s+3)(s+10)}\right)_{s=j 3} \cdot(4-j 2)
\end{aligned}
$$

In Matlab

```
>> s = j*3;
>> Y = (2*s+20)/( (s+1)* (s+3)*(s+10) ) * (4-j*2)
Y = -0.5333 - 0.4000i
```

or another way to do it in Matlab:

```
>> G = zpk(-10,[-1,-3,-10],2)
    2 (s+10)
(s+1) (s+3) (s+10)
```

```
>> Y = evalfr(G, j*3) * (4 - j*2)
Y = -0.5333-0.4000i
```

meaning

$$
y(t)=-0.5333 \cos (3 t)+0.4000 \sin (3 t)
$$

c) Determine $y(t)$ assuming $x(t)$ is a unit step input

In this case, use LaPlace transforms since $\mathrm{x}(\mathrm{t})=0$ for $\mathrm{t}<0$

$$
\begin{aligned}
& Y=\left(\frac{2 s+20}{(s+1)(s+3)(s+10)}\right) X \\
& Y=\left(\frac{2 s+20}{(s+1)(s+3)(s+10)}\right)\left(\frac{1}{s}\right)
\end{aligned}
$$

Use partial fractions

$$
Y=\left(\frac{0.667}{s}\right)+\left(\frac{-1}{s+1}\right)+\left(\frac{0.333}{s+3}\right)+\left(\frac{0}{s+10}\right)
$$

Take the inverse LaPlace transform

$$
y(t)=\left(0.667-e^{-t}+0.333 e^{-3 t}+0 e^{-10 t}\right) u(t)
$$

Note: Matlab can do partial fractions

```
>>G = zpk(-10,[-1,-3,-10,0],2)
    2 (s+10)
s (s+1) (s+3) (s+10)
>> s = 0 + 1e-9;
>> evalfr(G,s) * (s + 0)
ans = 0.6667
>> s = -1 + 1e-9;
>> evalfr(G,s) * (s + 1)
ans = -1.0000
>> s = -3 + 1e-9;
>> evalfr(G,s) * (s + 3)
ans=0.3333
>> s = -10 + 1e-9;
>> evalfr(G,s) * (s + 10)
ans = -3.1746e-012
```

2) Assume X and Y are related by the following transfer function:

$$
Y=\left(\frac{3000}{(s+3+j 7)(s+3-j 7)(s+30)}\right) X
$$

a) Use 2nd-order approximations to determine

- The 2% settling time
- The percent overshoot for a step input
- The steady-state output for a step input $(\mathrm{x}(\mathrm{t})=\mathrm{u}(\mathrm{t}))$

Keep the dominant pole ($s=-3+/-\mathrm{j} 7$)
From the 2nd-order approximations

$$
\begin{aligned}
& s=-3+j 7 \\
& T_{s}=\frac{4}{- \text { real }(s)}=\frac{4}{3} \\
& \theta=\arctan \left(\frac{7}{3}\right)=66.80^{0} \\
& \zeta=\cos \theta=0.3939 \\
& O S=\exp \left(\frac{-\pi \zeta}{\sqrt{1-\zeta^{2}}}\right)=26.02 \% \\
& \text { DC gain }=\left(\frac{3000}{(s+3+j 7)(s+3-j 7)(s+30)}\right)_{s=0}=1.7241
\end{aligned}
$$

b) Check your answers using the 3rd order model and Matlab, Simulink, of VisSim (your pick)

Using Matlab:

```
>> G = zpk([],[-3-j*7,-3+j*7,-30],3000)
    3000
------------------
(s+30) (s^2 + 6s + 58)
>> DC = evalfr(G,0)
DC = 1.7241
>> t = [0:0.001:2]';
>> y = step(G,t);
>> OS = max(y) / DC
OS = 1.2510
>> plot(t,y,t,0*t+DC,'m--',t,0*t+1.2602*DC,'m--')
```


Step Response along with the DC gain \& 1.26 * DC Gain
3) Determine the transfer function for a system with the following step response:

There is no oscillation, so this looks like a 1st-order system

$$
G(s)=\left(\frac{a}{s+b}\right)
$$

The DC gain is 1.42

$$
\left(\frac{a}{s+b}\right)_{s=0}=\left(\frac{a}{b}\right)=1.42
$$

The 2% settling time is abot 1.5 secods (ish)

$$
\begin{aligned}
& \left(\frac{4}{b}\right)=1.5 \\
& b=\left(\frac{4}{1.5}\right)=2.67 \\
& a=1.42 b=3.78
\end{aligned}
$$

so

$$
G(s) \approx\left(\frac{3.78}{s+2.67}\right)
$$

4) Determine the transfer function for a system with the following step response:

This does have oscillations, meaning the dominant poles are complex

$$
G(s)=\left(\frac{a}{(s+b+j c)(s+b-j c)}\right)
$$

The DC gain is 2.9

$$
G(s=0)=\left(\frac{a}{(s+b+j c)(s+b-j c)}\right)_{s=0}=2.9
$$

The frequency of oscillation is

$$
c=\omega_{d} \approx\left(\frac{4 \text { cycles }}{1.9 \mathrm{sec}}\right) 2 \pi=13.23
$$

The 2% settling time is about 2.5 seconds

$$
b=\sigma \approx \frac{4}{2.5}=1.6
$$

so

$$
G(s)=\left(\frac{a}{(s+1.6+j 13.23)(s+1.6-j 13.23)}\right)
$$

Pick 'a' to make the DC gain 2.9

$$
G(s)=\left(\frac{515.02}{(s+1.6+j 13.23)(s+1.6-j 13.23)}\right)
$$

