Homework \#9: ECE 461/661

Meeting Specs, Delays, Unstable Systems. Due Monday, October 23rd 20 points per problem

Meeting Design Specs

1) Assume

$$
G(s)=\left(\frac{9111}{(s+1.21)(s+9.02)(s+23.95)(s+44.67)}\right)
$$

Design a compensator, $\mathrm{K}(\mathrm{s})$, For the 4th-order model that results in

- No error for a step input
- A 2% settling time of 2 seconds, and
- 20% overshoot for the step response

Check your design in Matlab or Simulink or VisSim
Give an op-amp circuit to implement K (s)

Translate:

- Make the system type-1 (no error for a step input)
- Place the closed-loop dominant pole at $\mathrm{s}=-2+\mathrm{j} 4$
- (2 second settling time, 20% overshoot)

Start with the form of K(s)

- Add a pole at $\mathrm{s}=0$ to make the system type-
- Add two zeros to cancel the poles at $\{-1.21,-9.02\}$
- Add a pole at $\mathrm{s}=-\mathrm{a}$ so that $\mathrm{s}=-2+\mathrm{j} 4$ is on the root locus

$$
\begin{aligned}
& K(s)=k\left(\frac{(s+1.21)(s+9.02)}{s(s+a)}\right) \\
& G K=\left(\frac{9111 k}{s(s+23.95)(s+44.67))(s+a)}\right)
\end{aligned}
$$

Pick 'a' and ' k ' so that

$$
G K(s=-2+j 4)=1 \angle 180^{\circ}
$$

Evaluate what we know:

$$
\left(\frac{9111}{s(s+23.95)(s+44.67)}\right)_{s=-2+j 4}=2.1306 \angle-132.2483^{0}
$$

The angles are off by 47.75 degrees. Add a pole so that the angle to $s=-2+j 4$ is 47.75 degrees

$$
\begin{aligned}
& a=\frac{4}{\tan \left(477517^{0}\right)}+2 \\
& a=5.6331
\end{aligned}
$$

meaning

$$
K(s)=k\left(\frac{(s+1.21)(s+9.02)}{s(s+5.6331)}\right)
$$

To find k :

$$
\begin{aligned}
& G K=\left(\frac{9111}{s(s+23.95)(s+44.67)(s+5.6331)}\right)_{s=-2+j 4}=0.3943 \angle 180^{0} \\
& k=\frac{1}{0.3943}=2.5362
\end{aligned}
$$

and

$$
K(s)=2.5362\left(\frac{(s+1.21)(s+9.02)}{s(s+5.6331)}\right)
$$

Checking in Matlab

```
>>G = zpk([],[-1.21,-9.02,-23.95,-44.67],9111)
    9111
(s+1.21) (s+9.02) (s+23.95) (s+44.67)
>> K = zpk([-1.21,-9.02],[0,-5.6331],2.5362)
2.5362 (s+1.21) (s+9.02)
-----------------------
    s (s+5.633)
>> Gcl = minreal(G*K / (I+G*K));
>> eig(Gcl)
    -2.0000 + 4.0000i
    -2.0000 - 4.0000i
    -26.2667
    -43.9864
>> t = [0:0.01:5]';
>> Y = step(Gcl,t);
>> plot(t,y)
>> plot(t,Y,t,0*t+1,'m--',t,0*t+1.2,'m--')
>> xlabel('Seconds');
```


Op-Amp Circuit:

$$
K(s)=2.5362\left(\frac{(s+1.21)(s+9.02)}{s(s+5.6331)}\right)
$$

Rewrite as

$$
K(s)=\left(\frac{2.5362(s+1.21)}{(s+5.6331)}\right) \cdot\left(\frac{s+9.02}{s}\right)
$$

This is a Lead + PI compensator

Systems with Delays

2) Assume a 100 ms delay is added to the system

$$
G(s)=\left(\frac{9111}{(s+1.21)(s+9.02)(s+23.95)(s+44.67)}\right) e^{-0.1 s}
$$

Design a compensator, $K(s)$, For the 4th-order model that results in

- No error for a step input
- A 2% settling time of 2 seconds, and
- 20% overshoot for the step response

Check your design in Matlab or Simulink or VisSim
Give an op-amp circuit to implement K (s)

Same procedure: Add K(s) of the form

$$
\begin{aligned}
& K(s)=k\left(\frac{(s+1.21)(s+9.02)}{s(s+a)}\right) \\
& G K=\left(\frac{9111 k}{s(s+23.95)(s+44.67)(s+a)}\right) e^{-0.1 s}
\end{aligned}
$$

so that $\mathrm{s}=-2+\mathrm{j} 4$ is on the root locus. Evaludate what we know:

$$
\left(\left(\frac{9111}{s(s+23.95)(s+44.67)}\right) e^{-0.1 s}\right)_{s=-2+j 4}=2.6023 \angle-155.1666^{0}
$$

Pick 'a' so that the angles add up to 180 degrees at $s=-2+j 4$

$$
\begin{aligned}
& a=\frac{4}{\tan \left(24.8334^{0}\right)}+2 \\
& a=10.6436
\end{aligned}
$$

meaning

$$
K(s)=k\left(\frac{(s+1.21)(s+9.02)}{s(s+10.6436)}\right)
$$

Pick k so that the gain of $\mathrm{GK}=-1$

$$
\begin{aligned}
& \left(\left(\frac{9111}{s(s+23.95)(s+44.67)(s+10.6436)}\right) e^{-0.1 s}\right)_{s=-2+j 4}=0.2732 \angle 180^{0} \\
& k=\frac{1}{0.2732}=3.6599
\end{aligned}
$$

and

$$
K(s)=3.6599\left(\frac{(s+1.21)(s+9.02)}{s(s+10.6436)}\right)
$$

Checking in Matlab
>> G $=\operatorname{zpk}([],[-1.21,-9.02,-23.95,-44.67], 9111)$
9111
$(s+1.21)(s+9.02)(s+23.95)(s+44.67)$
>> $\mathrm{K}=\operatorname{zpk}([-1.21,-9.02],[0,-10.6436], 3.6599)$
$3.6599(s+1.21)(s+9.02)$

s $(s+10.64)$
>> [num,den] = Pade (0.1,6);
>> Delay = tf(num,den);
>> Gcl = minreal (G*Delay*K / (1 + G*Delay*K));
>> eig(Gcl)
$-2.0000+4.0000 i$
-2.0000 - 4.0000i
$-27.3908+20.6794 i$
$-27.3908-20.6794 i$
$-99.7828+27.5621 i$
$-70.1580+58.6448 i$
$-50.3002+89.3277 i$
$-99.7828-27.5621 i$
$-70.1580-58.6448 i$
$-50.3002-89.3277 i$
>> $t=[0: 0.01: 5] ' ;$
>> $y=\operatorname{step}(G c l, t) ;$
>> plot (t,y,t,0*t+1,'m--', t, 0*t+1.2, 'm--')
>> xlabel('Seconds');

Give an op-amp circuit to implement K (s)

$$
K(s)=3.6599\left(\frac{(s+1.21)(s+9.02)}{s(s+10.6436)}\right)
$$

Rewrite as

$$
K(s)=\left(\frac{3.6599(s+9.02)}{(s+10.6436)}\right)\left(\frac{s+1.21}{s}\right)
$$

Unstable Systems

3) Assume the slow pole was unstable

$$
G(s)=\left(\frac{9111}{(s-1.21)(s+9.02)(s+23.95)(s+44.67)}\right)
$$

Design a compensator, $K(s)$, For the 4th-order model that results in

- No error for a step input
- A 2% settling time of 2 seconds, and
- 20% overshoot for the step response

Check your design in Matlab or Simulink or VisSim

Step 1: Stabilze the system. Don't worry about the requirements.

A gain compensator works. Place the closed-loop dominant pole at $\mathrm{s}=-1$ (nice round number)

$$
\begin{aligned}
& \left(\frac{9111}{(s-1.21)(s+9.02)(s+23.95)(s+44.67)}\right)_{s=-1}=-0.5129 \\
& k=\frac{1}{0.5129}=1.9497
\end{aligned}
$$

The closed-loop system is then

```
    G}=(\frac{Gk}{1+Gk})=(\frac{17763.7167}{(s+1)(s+5.305)(s+26.01)(s+44.12)}
>> G = zpk([],[1.21,-9.02,-23.95,-44.67],9111)
Zero/pole/gain:
        9111
-------------------------------------
>> k1 = 1.9497;
>> G2 = minreal(G*k1 / (1+G*k1))
Zero/pole/gain:
            17763.7167
------------------------------------
(s+1) (s+5.305) (s+26.01) (s+44.12)
```

Step 2: Now that we have a stable system, add K2(s) to meet the requirements

$$
K_{2}=k\left(\frac{(s+1)(s+5.305)}{s(s+a)}\right)
$$

Pick 'a' so that the angles add up to 180 degrees at $\mathrm{s}=-2+\mathrm{j} 4$

```
>> G2K2 = zpk([],[0,-26.01,-44.12],17763.7167)
    17763.7167
---------------------
s (s+26.01) (s+44.12)
```

```
>> s = -2 + j*4;
>> x = evalfr(G2K2, s)
x = -2.5531 - 2.8910i
>> angle(x)*180/pi
ans = -131.4484
>> 180 + ans
ans = 48.5516
    a=\frac{4}{\operatorname{tan}(48.551\mp@subsup{6}{}{\circ})}+2
    a=5.5325
```

meaning

$$
K_{2}=k\left(\frac{(s+1)(s+5.305)}{s(s+5.5325)}\right)
$$

Find ' k ' so that the gain is one at $\mathrm{s}=-2+\mathrm{j} 4$

```
>> G2
            17763.7167
    (s+1) (s+5.305) (s+26.01) (s+44.12)
>> K2 = zpk([-1,-5.305],[0,-5.5325],1)
(s+1) (s+5.305)
---------------
    s (s+5.532)
>> evalfr(G2*K2, -2+j*4)
ans = -0.7228 - 0.0000i
>> k = 1/abs(ans)
k = 1.3834
```

So now we have K2:

```
>> K2 = zpk([-1, -5.305],[0,-5.5325],k)
1.3834 (s+1) (s+5.305)
    s (s+5.532)
```

The net closed-loop system is:

```
>> G3 = minreal(G2*K2 / (1 + G2*K2));
>> eig(G3)
    -1.0000
    -1.0000
    -2.0000 + 4.0000i
    -5.3050
    -2.0000 - 4.0000i
    -28.4157
    -43.2417
>> t = [0:0.01:5]';
>> y = step(Gcl,t);
>> plot(t,y,t,0*t+1,'m--',t,0*t+1.2,'m--')
>> xlabel('Seconds');
```


This actually shows off better in VisSim

