Homework \#12: ECE 461/661

Bode Plots. Nichols charts and gain \& lead compensation. Due Monday, November 27th

Bode Plots

1) Determine the system, $G(s)$, with the following gain vs. frequency

Start by drawing in the asymptotes with slopes multiples of $20 \mathrm{~dB} /$ decade

- Each corner indicates a pole

This gives

$$
G(s)=\left(\frac{k}{(s+1.8)(s+7)(s+22)}\right)
$$

Pick k to match the DC gain (10dB)

$$
\begin{aligned}
& \operatorname{gain}=10^{d B / 20} \\
& 10 d B=10^{10 / 20}=3.162 \\
& \left(\frac{k}{(s+1.8)(s+7)(s+22)}\right)_{s=0}=3.162 \\
& k=876.6
\end{aligned}
$$

so

$$
G(s) \approx\left(\frac{876.6}{(s+1.8)(s+7)(s+22)}\right)
$$

2) Determine the system, $\mathrm{G}(\mathrm{s})$, with the following gain vs. frequency

First, draw in the asymptotes at multiples of $20 \mathrm{~dB} /$ decade

Two zeros at $\mathrm{s}=0$ (left of 0.1)
Two poles at $0.61 \mathrm{rad} / \mathrm{sec}$

$$
\begin{aligned}
& \frac{1}{2 \zeta}=+2 d B=1.259 \\
& \zeta=0.397 \\
& \theta=66.6^{0}
\end{aligned}
$$

Two poles at $19 \mathrm{rad} / \mathrm{sec}$
$\frac{1}{2 \zeta}=+8 d B=2.512$
$\zeta=0.199$
$\theta=78.5^{0}$

So, $G(s)$ is in the form of

$$
G(s)=\left(\frac{k s^{2}}{\left(s+0.61 \angle \pm 66.6^{0}\right)\left(s+19 \angle \pm 78.5^{0}\right)}\right)
$$

To find k , pick a frequency and match the gain. Setting the gain at $3 \mathrm{rad} / \mathrm{sec}=+9 \mathrm{~dB}$

$$
\begin{aligned}
& \left(\frac{k s^{2}}{\left(s+0.61 \angle \pm 66.6^{0}\right)\left(s+19 \angle \pm 78.5^{0}\right)}\right)_{s=j 3}=+9 d B=2.818 \\
& k=963.3
\end{aligned}
$$

SO

$$
G(s)=\left(\frac{963.3 s^{2}}{\left(s+0.61 \angle \pm 66.6^{0}\right)\left(s+19 \angle \pm 78.5^{0}\right)}\right)
$$

Nichols Charts

3) The gain vs. frequency of a system is measured

w (rad/sec)	2	3	4	5	6	10
Gain (dB)	7	3	-1	-6	-12	-17
Phase (deg)	-140	-155	-162	-175	-192	-210

Using this data

- Transfer it to a Nichols chart
- Determine the maximum gain that results in a stable system
- Determine the gain, k , that results in a maximum closed-loop gain of $\mathrm{Mm}=1.5$

Use the function Nichols2.m

Compute $\mathrm{G}(\mathrm{jw})$ as a complex number

```
>> dB = [7,3,-1,-6,-12,-17]';
>> deg = [-140,-155,-162,-175,-192,-210]';
>> G = 10.^(dB/20) .* exp(j*deg*pi/180)
    -1.7150 - 1.4390i
    -1.2802 - 0.5970i
    -0.8476 - 0.2754i
    -0.4993 - 0.0437i
    -0.2457 + 0.0522i
    -0.1223 + 0.0706i
```

Plot on a Nichols chart along with the M-circle

```
>> Nichols2(G,1.5)
```


Adjust the gain so that

- It passes through ($0 \mathrm{~dB}, 180$ degrees)
- max gain for stability
- It is tangent to the M-circle
(several guesses later...)

```
>> Nichols2(G * [1,2.5,0.45],1.5);
>> grid
>>
```


Max gain for stability: $\mathbf{k}=\mathbf{2 . 5}$

Gain for $\mathbf{M m}=1.5$: $\mathrm{k}=\mathbf{0 . 4 5}$

funciton Nichols2.m

```
function [Mol] = Nichols2(Gw, Mm)
    Gwp = unwrap(angle(Gw))*180/pi;
    Gwm = 20*log10(abs(Gw));
% M-Circle
    phase = [0:0.01:1]' * 2*pi;
    Mcl = Mm * exp(j*phase);
    Mol = Mcl ./ (1 - Mcl);
    Mp = unwrap(angle(Mol))*180/pi - 360;
    Mm = 20*log10(abs(Mol));
    plot(Gwp,Gwm,'b',Mp,Mm,'r');
    xlabel('Phase (degrees)');
    ylabel('Gain (dB)');
    xlim([-220,-120]);
    ylim([-30,20]);
    end
```


Gain and Lead Compensation

Problem 4 \& 5) Assume

$$
G(s)=\left(\frac{9111}{s(s+9.02)(s+23.95)(s+44.67)}\right)
$$

4) Design a gain compensator that results in a 40 degree phase margin.

- Check the resulting step response in Matlab

Translation: Pick k so that at some frequency

$$
G(j \omega) \cdot k=1 \angle-140^{\circ}
$$

Step 1: Determine the frequency where the phase is -140 degrees
(numeric solution: search until the angle addds up)

$$
G(j 5.338)=0.1475 \angle-140^{0}
$$

Step 2: Pick k to make the gain one at this frequency

$$
k=\frac{1}{0.1475}=6.7795
$$

Check in Matlab. Note:
40 degree phase margin means

$$
\begin{aligned}
& M_{m} \approx\left(\frac{1 \angle-140^{0}}{1+1 \angle-140^{0}}\right)=1.4619 \\
& M_{m}=\frac{1}{2 \zeta \sqrt{1-\zeta^{2}}} \\
& \zeta=0.3678 \\
& O S=\exp \left(\frac{-\pi \zeta}{\sqrt{1-\zeta^{2}}}\right)=28.86 \%
\end{aligned}
$$

In Matlab:

```
>> G = zpk([],[0,-9.02,-23.95,-44.67],9111)
            9111
s (s+9.02) (s+23.95) (s+44.67)
>> k = 6.7795;
>> Gcl = minreal (G*k / (1+G*k));
>> t = [0:0.01:10]';
>> y = step(Gcl, t);
>> max(y)
ans = 1.3019
```

The actual system has 30.19% overshoot

- Calculated was 28.86%
- Designing for phase margin is usually a little aggressive
- (you intersect the M-circle rather than being tangent to it)

This shows up on the Nichols chart (not required)

```
>> w = logspace(-2,2,200)';
>> Gw = Bode2(G,w);
>> Nichols2(Gw*6.7795, 1.4619);
>> grid
>> ylim([-15,15])
```


$\mathrm{G}(\mathrm{jw})$ intersects the M -circle at 0 dB
(what you get when you design for a phase margin)

The step response has 30% overshoot (close to the design of 28\%)

```
> Plot (t,y)
>> xlim([0,3])
>> grid
>>
```


5) Design a lead compensator that results in a 40 degree phase margin.

- Check the resulting step response in Matlab

$$
G(s)=\left(\frac{9111}{s(s+9.02)(s+23.95)(s+44.67)}\right)
$$

The frequency that is too close to -1 is $5.338 \mathrm{rad} / \mathrm{sec}$ (problem \#4

- Pick the zero to be $1 . .3$ times this frequency
- Pick the zero to cancel the pole at -9.02 (within this range)
- Replace it with a pole at -90

$$
\begin{aligned}
& K(s)=k\left(\frac{s+9.02}{s+90}\right) \\
& G K=\left(\frac{9111}{s(s+23.95)(s+44.67)(s+90)}\right)
\end{aligned}
$$

Search along the jw axis until the angle adds up to -140 degrees
$G K(j 12.2028)=0.0066 \angle-140^{0}$
Pick k to make the gain one

$$
k=\frac{1}{0.0066}=151.41
$$

so

$$
K(s)=151.41\left(\frac{s+9.02}{s+90}\right)
$$

Checking in Matlab:

```
>> K = zpk(-9.02,-90,151.41)
Zero/pole/gain:
151.41 (s+9.02)
---------------
        (s+90)
>> Gcl = minreal( G*K / (1 + G*K) );
>> t = [0:0.01:3]';
>> y = step(Gcl, t);
>> max(y)
        1.3056
>> grid
>>
```

The system has 30.56% overshoot

- expected is 28%

Sidelight: The overshoot is a little high since you intersect the M-circle rather than being tangent to it

```
>> Gw = Bode2(G*K, w);
>> Nichols2(Gw, 1.4619);
>> grid
>> ylim([-15,15])
```


$\mathrm{G}(\mathrm{jw})$ intersects the M -circle at OdB
(what you get when you design for a phase margin)

Problem 6 \& 7) Assume a 200ms delay is added

$$
G(s)=\left(\frac{9111}{s(s+9.02)(s+23.95)(s+44.67)}\right) e^{-0.2 s}
$$

6) Design a gain compensator that results in a 40 degree phase margin.

- Check the resulting step response in Matlab

Same as before: Search along the jw axis until the phase is -140 degrees

$$
G(j 2.3430)=0.3876 \angle-140^{\circ}
$$

Pick k to make the gain one

$$
k=\frac{1}{0.3876}=2.5798
$$

Checking in Matlab:
Use a 4th-order Pade approximation for the delay

```
>> G = zpk([],[0,-9.02,-23.95,-44.67],9111)
            9 1 1 1
s (s+9.02) (s+23.95) (s+44.67)
>> [num,den] = pade(0.2,4);
>> Delay = tf(num,den);
>> k = 2.5798;
>> Gcl = minreal(G*Delay*k / (1 + G*Delay*k));
>> t = [0:0.01:5]';
>> y = step(Gcl,t);
>> max(y)
ans = 1.3468
>> plot(t,y)
>> grid
```

The overshoot is a little high (34.68\%)

Sidelight: Again, the overshoot is a little high due to intersecting with the M-circle rather than being tangent to it.

```
>>GW = Bode2(G*Delay*k, w);
>> Nichols2(Gw, 1.4619);
>> grid
```


$\mathrm{G}(\mathrm{jw})$ intersects the M -circle at 0 dB
(what you get when you design for a phase margin)
7) Design a lead compensator that results in a 40 degree phase margin.

- Check the resulting step response in Matlab

The frequency that's too close to -1 is $2.34 \mathrm{rad} / \mathrm{sec}$

- Pick the zero to be $1 . .3$ times this frequency

Place the zero at $\mathrm{s}=-3$

$$
\begin{aligned}
& K(s)=k\left(\frac{s+3}{s+30}\right) \\
& G K=\left(\frac{9111}{s(s+9.02)(s+23.95)(s+44.67)}\right) e^{-0.2 s\left(\frac{k(s+3)}{s+30}\right)}
\end{aligned}
$$

Find the frequency where the phase of GK is -140 degrees

$$
G K(j 4.7035)=0.0319 \angle-140^{0}
$$

Pick k to make the gain one

$$
k=\frac{1}{0.0319}=31.3383
$$

so

$$
K(s)=31.3383\left(\frac{s+3}{s+30}\right)
$$

Checking in Matlab

Note: The overshoot is too much - due to intersecting the M-circle. In this case, the slope of $\mathrm{G}(\mathrm{jw})$ is more flat, resulting in the actual resonance being a lot more than it should be

```
>> Gw = Bode2(G*Delay*K, w);
>> Nichols2(Gw, 1.4619);
>> ylim([-15,15])
>> grid
>>
```

Designing for a phase margin usually is about the same as designing for Mm. In this case, it's a little too aggressive:

$\mathrm{G}(\mathrm{jw})$ intersects the M -circle at 0 dB
(what you get when you design for a phase margin)

