ECE 461/661 - Test \#1: Name

1) Determine the functions for X and Y according to the following ladder diagram. (you don't need to simplify)

$$
\begin{aligned}
& X=\bar{A}(B C+\bar{Y}) \\
& Y=(A \bar{C}+X) \bar{B}
\end{aligned}
$$

2) Give the transfer function for a system with the following response to a unit step input:

It's a second-order system (oscillation means complex poles)
$\mathrm{a}=\operatorname{real}($ pole $)$:

$$
\begin{aligned}
& T_{s} \approx 225 \mathrm{~ms} \\
& \operatorname{real}(\text { pole }) \approx \frac{4}{225 m s}=17.78
\end{aligned}
$$

$\mathrm{b}=\operatorname{imag}($ pole $)$

$$
b=\left(\frac{4 \text { cycles }}{125 m s}\right) 2 \pi=201.1
$$

DC gain $=1.45$ (ish)

$$
G(s) \approx\left(\frac{k}{(s+17.78+j 201.1)(s+17.78-j 201.1)}\right)
$$

Pick 'k' to make the DC gain 1.45

$$
G(s) \approx\left(\frac{59,098}{(s+17.78+j 201.1)(s+17.78-j 201.1)}\right)
$$

3) Find the transfer funciton from X to Y

Shortcut:

$$
Y=\left(\frac{A D F+B D F}{1+B C+D E+B D F G}\right) X
$$

Long Way:

$$
\begin{aligned}
& m=X-C B m-G Y \\
& n=A X+B m-E D n \\
& Y=F D n
\end{aligned}
$$

Solve for m

$$
\begin{aligned}
& (1+C B) m=X-G Y \\
& m=\left(\frac{X-G Y}{1+C B}\right)
\end{aligned}
$$

Substitute m in to the second equation, solve for n

$$
\begin{aligned}
& n=A X+B\left(\frac{x-G Y}{1+C B}\right)-E D n \\
& (1+E D) n=A X+B\left(\frac{x-G Y}{1+C B}\right) \\
& (1+C B)(1+E D) n=(1+C B) A X+B(X-G Y) \\
& n=\frac{(A+C B A+B) X-B G Y}{(1+C B)(1+E D)}
\end{aligned}
$$

Plug n into the 3 rd equation

$$
\begin{aligned}
& Y=F D\left(\frac{(A+C B A+B) X-B G Y}{(1+C B)(1+E D)}\right) \\
& (1+C B)(1+E D) Y=F D((A+C B A+B) X-B G Y) \\
& (1+C B+E D+C B E D+F D B G) Y=(F D A+F D C B A+F D B) X
\end{aligned}
$$

$$
Y=\left(\frac{F D A+F D C B A+F D B}{1+C B+E D+C B E D+F D B G}\right) X
$$

vs. shortcut (shortcut is missing a term in the numerator and the denominator)

$$
Y=\left(\frac{A D F+B D F}{1+B C+D E+B D F G}\right) X
$$

4) For the following RLC circuit:

- Write the dynamics of this system as four compled differential equations in terms of \{Vin, V1, V2, V3, I4\}
- You don't need to solve or put in state-space form (that's a different problem on the test)

$$
\begin{aligned}
& I_{1}=0.1 s V_{1}=\left(\frac{V_{i n}-V_{1}}{4}\right)-\left(\frac{V_{1}}{7}\right)-\left(\frac{V_{1}-V_{2}}{5}\right) \\
& I_{2}=0.2 s V_{2}=\left(\frac{V_{1}-V_{2}}{5}\right)+I_{4}-\left(\frac{V_{2}}{8}\right)-\left(\frac{V_{2}-V_{3}}{6}\right) \\
& I_{3}=0.3 s V_{3}=\left(\frac{V_{2}-V_{3}}{6}\right)-\left(\frac{V_{3}}{9}\right) \\
& V_{4}=0.4 s I_{4}=V_{i n}-3 I_{4}-V_{2}
\end{aligned}
$$

5) Assume the dynamics of a mass-spring system are as follows.

$$
\begin{aligned}
& \left(2 s^{2}+4 s+8\right) x_{1}-(10 s+12) x_{2}=F \\
& \left(5 s^{2}+15 s+30\right) x_{2}-(2 s+6) x_{1}=0
\end{aligned}
$$

- Give the state-space representation for the dynamics.
- Assume the output is $\mathrm{Y}=\mathrm{x} 1-\mathrm{x} 2$

Solving for the highest derivative

$$
\begin{aligned}
& s^{2} x_{1}=(-2 s-4) x_{1}+(5 s+6) x_{2}+0.5 F \\
& s^{2} x_{2}=(0.4 s+1.2) x_{1}+(-3 s-6) x_{2}
\end{aligned}
$$

$$
s\left[\begin{array}{c}
x_{1} \\
x_{2} \\
s x_{1} \\
s x_{2}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-4 & 6 & -2 & 5 \\
1.2 & -6 & 0.4 & -3
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
s x_{1} \\
s x_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
0.5 \\
0
\end{array}\right] F
$$

$$
Y=\left[\begin{array}{llll}
1 & -1 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
s x_{1} \\
s x_{2}
\end{array}\right]+[0] F
$$

