ECE 461/661 - Test #2: Name

Feedback and Root Locus - Fall 2023

Root Locus

1) The root locus of G(s) is shown below.

$$G(s) = \left(\frac{100(s+1+j4)(s+1-j4)}{s(s+4)(s+6)(s+3+j2)(s+3-j2)}\right)$$

Determine the following

Approach Angle to the zero at -1+j4	Departure Angle from the pole at -3+j2	Real Axis Loci
42.34 degrees	180.00 degrees	(0, -4), (-6, -inf)
Breakaway Point (approx)	Asymptotes	jw Crossing(s)
-0.9717	show on graph	j2.2917
		j4.1067
		j7.7384

Root Locus

1) The root locus of G(s) is shown below.

$$G(s) = \left(\frac{100(s-1+j4)(s-1-j4)}{s(s+4)(s+6)(s+3+j2)(s+3-j2)}\right)$$

Determine the following

Approach Angle to the zero at +1+j4	Departure Angle from the pole at -3+j2	Real Axis Loci
-42.75 degrees	-176.82 degrees	(0, -4), (-6, -inf)
Breakaway Point (approx)	Asymptotes	jw Crossing(s)
-0.8315	show on graph	j1.56
		j11.24

Gain Compensation

2) Determine the gain (K(s) = k) so that the feedback system has 40% overshoot for a step input. Also determine the closed-loop dominant pole(s) and error constant, Kp

$$G(s) = \left(\frac{100}{(s+0.5)(s+3)(s+5)(s+6)}\right)$$

k 40% overshoot	Closed-Loop dominant pole(s)	Kp Error Constant
1.8461	-0.6044 + j2.074	4.1024
	damping ratio = 0.28 angle = 73.74 degrees	(2.222)(1.8461)

Lead/PI Compensation

- 3) Design a compensator, K(s), so that the closed-loop system has
 - No error for a step input
 - Closed-Loop dominant poles at s = -2 + j1.5, and
 - Finite gain as $s \rightarrow \infty$ (i.e. have at least as many poles as zeros)

$$G(s) = \left(\frac{100}{(s+0.5)(s+3)(s+5)(s+6)}\right) \quad K(s) = 11.9366\left(\frac{(s+0.5)(s+3)(s+5)}{s(s+12.4650)^2}\right)$$

$$K(s) = k \left(\frac{(s+0.5)(s+3)}{s(s+a)}\right)$$

$$\left(\frac{100}{s(s+5)(s+6)}\right)_{s=-2+j1.5} = 2.5 \angle + 143^{\circ}$$

$$K(s) = k \left(\frac{(s+0.5)(s+3)(s+5)}{s(s+a)^{2}}\right)$$

$$\left(\frac{100}{s(s+6)}\right)_{s=-2+j1.5} = 9.36 \angle -163.70^{\circ}$$

$$\angle (s+a) = \frac{1}{2}(16.30^{\circ}) = 8.15^{\circ}$$

$$a = \frac{1.5}{\tan(8.15^{\circ})} + 2 = 12.4650$$

$$GK = \left(\frac{100}{s(s+6)(s+12.4650)^{2}}\right)_{s=-2+j1.5} = 0.0838 \angle 180^{\circ}$$

$$k = \frac{1}{0.838} = 11.9366$$

Compensator Design (hardware)

4) Design a circuit to implement K(s)

$$K(s) = \left(\frac{30(s+3)(s+7)}{s(s+10)}\right)$$

Let

$$K(s) = \left(\frac{10(s+7)}{s+10}\right) \left(\frac{3(s+3)}{s}\right)$$

