ECE 461/661 - Test \#2: Name

Feedback and Root Locus - Fall 2023

Root Locus

1) The root locus of $\mathrm{G}(\mathrm{s})$ is shown below.

$$
G(s)=\left(\frac{100(s+1+j 4)(s+1-j 4)}{s(s+4)(s+6)(s+3+j 2)(s+3-j 2)}\right)
$$

Determine the following

Approach Angle to the zero at $-1+\mathrm{j} 4$	Departure Angle from the pole at $-3+\mathrm{j} 2$	Real Axis Loci
$\mathbf{4 2 . 3 4}$ degrees	$\mathbf{1 8 0 . 0 0}$ degrees	$\mathbf{(0 , - 4) , (- 6 , - i n f)}$
Breakaway Point (approx)	Asymptotes	$\mathrm{jw} \mathrm{Crossing(s)}$
-0.9717	show on graph	j 2.2917
		j 4.1067
		j 7.7384

Root Locus

1) The root locus of $G(s)$ is shown below.

$$
G(s)=\left(\frac{100(s-1+j 4)(s-1-j 4)}{s(s+4)(s+6)(s+3+j 2)(s+3-j 2)}\right)
$$

Determine the following

Approach Angle to the zero at $+1+\mathrm{j} 4$	Departure Angle from the pole at $-3+\mathrm{j} 2$	Real Axis Loci
$-\mathbf{4 2 . 7 5}$ degrees	$\mathbf{- 1 7 6 . 8 2}$ degrees	$\mathbf{(0 , - 4) , (- 6 , - i n f)}$
Breakaway Point (approx)	Asymptotes	jw Crossing(s)
$-\mathbf{0 . 8 3 1 5}$	show on graph	$\mathbf{j 1 . 5 6}$
		$\mathbf{j 1 1 . 2 4}$

Gain Compensation

2) Determine the gain $(\mathrm{K}(\mathrm{s})=\mathrm{k})$ so that the feedback system has 40% overshoot for a step input. Also determine the closed-loop dominant pole(s) and error
 constant, Kp

$$
G(s)=\left(\frac{100}{(s+0.5)(s+3)(s+5)(s+6)}\right)
$$

k 40% overshoot	Closed-Loop dominant pole(s)	Kp Error Constant
$\mathbf{1 . 8 4 6 1}$	$\mathbf{- 0 . 6 0 4 4} \boldsymbol{+} \mathbf{j 2 . 0 7 4}$	$\mathbf{4 . 1 0 2 4}$
	damping ratio $=0.28$	$(2.222)(1.8461)$
	angle $=73.74$ degrees	

Lead/PI Compensation

3) Design a compensator, $K(s)$, so that the closed-loop system has

- No error for a step input
- Closed-Loop dominant poles at $\mathrm{s}=-2+\mathrm{j} 1.5$, and
- Finite gain as $\mathrm{s} \rightarrow \infty$ (i.e. have at least as many poles as zeros)

$$
G(s)=\left(\frac{100}{(s+0.5)(s+3)(s+5)(s+6)}\right) \quad K(s)=11.9366\left(\frac{(s+0.5)(s+3)(s+5)}{s(s+12.4650)^{2}}\right)
$$

$K(s)=k\left(\frac{(s+0.5)(s+3)}{s(s+a)}\right)$

$$
\left(\frac{100}{s(s+5)(s+6)}\right)_{s=-2+j 1.5}=2.5 \angle+143^{0}
$$

$K(s)=k\left(\frac{(s+0.5)(s+3)(s+5)}{s(s+a)^{2}}\right)$

$$
\begin{aligned}
& \left(\frac{100}{s(s+6)}\right)_{s=-2+j 1.5}=9.36 \angle-163.70^{0} \\
& \angle(s+a)=\frac{1}{2}\left(16.30^{0}\right)=8.15^{0} \\
& a=\frac{1.5}{\tan \left(8.15^{0}\right)}+2=12.4650 \\
& G K=\left(\frac{100}{s(s+6)(s+12.4650)^{2}}\right)_{s=-2+j 1.5}=0.0838 \angle 180^{0}
\end{aligned}
$$

$$
k=\frac{1}{0.838}=11.9366
$$

Compensator Design (hardware)

4) Design a circuit to implement $\mathrm{K}(\mathrm{s})$

$$
K(s)=\left(\frac{30(s+3)(s+7)}{s(s+10)}\right)
$$

Let

$$
K(s)=\left(\frac{10(s+7)}{s+10}\right)\left(\frac{3(s+3)}{s}\right)
$$

