ECE 461/661-Test \#3: Name

Digital Control \& Frequency Domain Techniques - Fall 2023

sto \mathbf{z} conversion

1) Determine the discrete-time equivalent for $\mathrm{G}(\mathrm{s})$. Assume a sampling rate of $\mathrm{T}=0.01$ second

$$
G(s)=\left(\frac{100(s+5)}{(s-2)(s+7+j 3)(s+7-j 3)}\right)
$$

Convert from the s-plane to the z-plane as $z=e^{s T}$

$$
\begin{array}{ll}
s=-5 & z=e^{s T}=0.9512 \\
s=+2 & z=e^{s T}=1.0202 \\
s=-7+j 3 & z=e^{s T}=0.9320+j 0.0280 \\
s=-7-j 3 & z=e^{s T}=0.9320-j 0.0280
\end{array}
$$

So

$$
G(z)=\left(\frac{k(z-0.9512)}{(z-1.0202)(z-0.9320+j 0.0280)(z-0.9320-j 0.0280)}\right)
$$

The DC gain of $\mathrm{G}(\mathrm{s})$ is -4.3103 . Pick k to match the DC gain

$$
\begin{aligned}
& \left(\frac{k(z-0.9512)}{(z-1.0202)(z-0.9320+j 0.0280)(z-0.9320-j 0.0280)}\right)_{z=1}=-4.3103 \\
& k=0.009658
\end{aligned}
$$

resulting in

$$
G(z)=\left(\frac{0.009658(z-0.9512)}{(z-1.0202)(z-0.9320+j 0.0280)(z-0.9320-j 0.0280)}\right)
$$

Digital Compensators: K(z)

2) Assume a unity feedback system with a sampling rate of $\mathrm{T}=0.1$ second

$$
G(z)=\left(\frac{0.002 z}{(z-0.98)(z-0.92)(z-0.65)}\right)
$$

Design a digital compensator, $\mathrm{K}(\mathrm{z})$, which results in

- No error for a step input,
- Closed-Loop Dominant poles at $\mathrm{z}=0.9+\mathrm{j} 0.1$, and
- Is causal (the number of poles in $\mathrm{K}(\mathrm{z})$ is equal to or greater than the number of zeros)

Translation

- Add a pole at $\mathrm{z}=+1$ making it a type- 1 system
- Cancel zeros \& add poles so that $0.9+\mathrm{j} 0.1$ is on the root locus

Let

$$
\begin{aligned}
& K(z)=k\left(\frac{(z-0.98)(z-0.92)}{(z-1)(z-a)}\right) \\
& G K=\left(\frac{0.002 k \cdot z}{(z-1)(z-0.65)(z-a)}\right)
\end{aligned}
$$

Analyze what we know:

$$
\left(\frac{0.002 \cdot z}{(z-1)(z-0.65)}\right)_{z=0.9+j 0.1}=0.0476 \angle-150.46^{0}
$$

To make the angles add up to 180 degrees

$$
\begin{aligned}
& \angle(z-a)=29.53^{0} \\
& a=0.9-\left(\frac{0.1}{\tan \left(29.53^{0}\right)}\right) \\
& a=0.7253
\end{aligned}
$$

Checking

$$
\left(\frac{0.002 \cdot z}{(z-1)(z-0.7253)(z-0.65)}\right)_{z=0.9+j 0.1}=0.2363 \angle 180^{0}
$$

so

$$
k=\frac{1}{0.2363}=4.2324
$$

and

$$
K(z)=4.2324\left(\frac{(z-0.98)(z-0.92)}{(z-1)(z-0.7253)}\right)
$$

3) Bode Plots

Determine the system, $\mathrm{G}(\mathrm{s})$, which has the following gain vs. frequency

2 x poles at $0.7 \mathrm{rad} / \mathrm{sec}$

$$
\begin{aligned}
& \frac{1}{2 \zeta}=-2 d B=0.7943 \\
& \zeta=0.6295 \\
& \theta=51.0^{0}
\end{aligned}
$$

2 x poles at $20 \mathrm{rad} / \mathrm{sec}$

$$
\frac{1}{2 \zeta}=+4 d B=1.5849
$$

$$
\zeta=0.3155
$$

$$
\theta=71.6^{0}
$$

So

$$
G(s) \approx\left(\frac{k s^{2}}{\left(s+0.7 \angle \pm 51.0^{0}\right)\left(s+20 \angle \pm 71.6^{0}\right)}\right)
$$

To find k , mach the gain somewhere

$$
\begin{aligned}
& G(j 1) \approx 8 d B=\left(\frac{k s^{2}}{\left(s+0.7 \angle \pm 51.0^{0}\right)\left(s+20 \angle \pm 71.6^{0}\right)}\right)_{s=j 1} \\
& 2.5119=k \cdot\left(0.0025 \angle 58.12^{0}\right)
\end{aligned}
$$

Taking the magnitude

$$
k=1020.8
$$

and

$$
G(s) \approx\left(\frac{1020.8 \cdot s^{2}}{\left(s+0.7 \angle \pm 51.0^{0}\right)\left(s+20 \angle \pm 71.6^{0}\right)}\right)
$$

4) Nichols Charts

Assume a unity feedback system where the gain of $G(s)$ is as follows:

Determine

- The maximum gain, k , for stability ans: $\mathbf{k}=\mathbf{- 2 d B}$
- k that results in a resonance of $\mathrm{Mm}=2.5$ ans: $\mathbf{k}=\mathbf{- 1 0 d B}$

frequency $(\mathrm{rad} / \mathrm{sec})$	3	5	7	9	15
Gain	15 dB	10 dB	5 dB	0 dB	-5 dB
Phase (degrees)	-140 deg	-155 deg	-170 deg	-185 deg	-210 deg

5) Analog Compensator (Bode Plots)

Assume a unity feedback system with

$$
G(s)=\left(\frac{10}{(s+0.5)(s+3)(s+9)}\right)
$$

Determine a compensator, $\mathrm{K}(\mathrm{s})$, which results in

- No error for a step input
- A phase margin of 30 degrees
- A 0 dB gain frequency of $3 \mathrm{rad} / \mathrm{sec}$

Let

$$
\begin{aligned}
& K(s)=k\left(\frac{(s+0.5)(s+3)}{s(s+a)}\right) \\
& G K=\left(\frac{10 k}{s(s+9)(s+a)}\right)
\end{aligned}
$$

What we know is

$$
G K(j 3)=1 \angle-150^{0}
$$

Anayze what we know

$$
\left(\frac{10}{s(s+9)}\right)_{s=j 3}=0.3514 \angle-108.43^{0}
$$

For the angle to add up to -150 degrees

$$
\begin{aligned}
& \angle(s+a)=41.5651^{0} \\
& a=\left|\frac{3}{\tan \left(41.5651^{0}\right)}\right|=3.3831
\end{aligned}
$$

Analyze what we know now:

$$
\left(\frac{10}{s(s+3.3931)(s+9)}\right)_{s=j 3}=0.07760 \angle-150.0^{0}
$$

meaning

$$
k=\frac{1}{0.07760}=12.89
$$

and

$$
K(s)=12.89\left(\frac{(s+0.5)(s+3)}{s(s+3.3931}\right)
$$

