Mass \& Spring Systems: The Wave Equation

Mass and spring systems also are dynamic systems. One way to model these systems is to

- 1) Replace the mass, spring, and friction terms with their LaPlace admittance,
- 2) Redraw the system as an electric circuit, and
- 3) Write the voltage node equations.

The LaPlace admittance's come from modeling the system as
Force $=$ mass $*$ acceleration
$\mathrm{F}=\mathrm{ZX} \quad(\mathrm{F}=$ force, $\mathrm{Z}=$ admittance, $\mathrm{X}=$ displacement $)$
which has the electrical analog

$$
\mathrm{I}=\mathrm{G} \mathrm{~V} \quad(\text { current }=\text { admittance } * \text { voltage }) .
$$

Mechanical System	Electrical Analog
Force in the positive direction	Current to the node
Displacement in the positive direction	Positive voltage
Mass, (see below)	Admittance

	Symbol	$\mathrm{F}=\mathrm{Z} \mathrm{X}$ Relationship	LaPlace value of Addmittance
Mass	\square	$\mathrm{f}=\mathrm{m} \mathrm{x"}$	$\mathrm{~s}^{2} \mathrm{~m}$
Spring	\square	$\mathrm{f}=\mathrm{k} \mathrm{x}$	k
Friction	\square	$\mathrm{f}=\mathrm{B} \mathrm{x}^{\prime}$ $\mathrm{f}=\mathrm{f}_{\mathrm{v}} \mathrm{x}^{\prime}$	sB sf_{v}

Example:

Write the equations of motion for the following mass and spring system:

Solution:

Step 1: Draw the circuit equivalent:

Step 2: Write the voltage node equations. From before
(The sum of the admittance's to node a)Va - (the sum of the admittances from node a to b)Vb - ...) $=($ The current to node a)multiply a: times (1/R2) and

$$
\begin{aligned}
& \left(K_{1}+B_{1} s+M_{1} s^{2}+K_{2}+B_{3} s\right) X_{1}-\left(K_{2}+B_{3} s\right) X_{2}=F \\
& \left(M_{2} s^{2}+B_{2} s+K_{3}+K_{2}+B_{3} s\right) X_{2}-\left(K_{2}+B_{3} s\right) X_{1}=0
\end{aligned}
$$

Step 3: Solve to find the output as a function of the input. State-Space really helps here

Solve for the highest derivative:

$$
\begin{aligned}
& M_{1} s^{2} X_{1}=-\left(K_{1}+K_{2}+B_{1} s+B_{3} s\right) X_{1}+\left(K_{2}+B_{3} s\right) X_{2}+F \\
& M_{2} s^{2} X_{2}=-\left(B_{2} s+K_{3}+K_{2}+B_{3} s\right) X_{2}+\left(K_{2}+B_{3} s\right) X_{1}
\end{aligned}
$$

Put in matrix form. Note that there are two energy states for each mass

- Position (X)
- Velocity (sX)

$$
\begin{aligned}
& {\left[\begin{array}{c}
X_{1} \\
X_{2} \\
\cdots \\
s X_{1} \\
s X_{2}
\end{array}\right]=\left[\begin{array}{ccccc}
0 & 0 & \vdots & 1 & 0 \\
0 & 0 & \vdots & 0 & 1 \\
\cdots & \cdots & \cdots & \cdots \\
\left(\frac{-\left(K_{1}+K_{2}\right)}{M_{1}}\right) & \left(\frac{K_{2}}{M_{1}}\right) & \vdots & \left(\frac{-\left(B_{1}+B_{3}\right)}{M_{1}}\right) & \left(\frac{B_{3}}{M_{1}}\right) \\
\left(\frac{K_{2}}{M_{2}}\right) & \left(\frac{-\left(K_{2}+K_{3}\right)}{M_{2}}\right) & \vdots & \left(\frac{B_{3}}{M_{2}}\right) & \left(\frac{-\left(B_{2}+B_{3}\right)}{M_{2}}\right)
\end{array}\right]\left[\begin{array}{c}
X_{1} \\
X_{2} \\
\cdots \\
s X_{1} \\
s X_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
\cdots \\
\left(\frac{1}{M_{1}}\right) \\
0
\end{array}\right] F} \\
& Y=X_{2}=\left[\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
X_{1} \\
X_{2} \\
s X_{1} \\
s X_{2}
\end{array}\right]+[0] F
\end{aligned}
$$

Note that

- You have 2 N states, where N is the number of masses. Each mass has two energy states (kinetic and potential energy) giving your 2 N state variables.
- The first N rows are [$0: \mathrm{I}$] where I is the identity matrix. This tells MATLAB that the states are position and velocity.
- The last N rows are where the dynamics come into play.

Also also, you can have real or complex poles for mass-spring systems - unlike the heat equation which always has real poles.

Finding the Transfer Function:

To find the transfer function, use MATLAB or SciLab. Assume for example that

- $M=1 \mathrm{~kg}$
- $B=2 \mathrm{Ns} / \mathrm{m}$
- $\mathrm{K}=10 \mathrm{~N} / \mathrm{m}$

Then the state-space model is:

$$
s\left\lfloor\begin{array}{c}
X_{1} \\
X_{2} \\
s X_{1} \\
s X_{2}
\end{array}\right\rfloor=\left\lfloor\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-20 & 10 & -4 & 2 \\
10 & -20 & 2 & -4
\end{array}\right\rfloor\left\lfloor\begin{array}{c}
X_{1} \\
X_{2} \\
s X_{1} \\
s X_{2}
\end{array}\right\rfloor+\left\lfloor\begin{array}{c}
0 \\
0 \\
1 \\
0
\end{array}\right\rfloor F
$$

MATLAB Code: Input the A B C D matrices:

```
A = [0,0,1,0 ; 0,0,0,1 ; -20,10,-4,2 ; 10,-20,2,-4];
B = [0;0;1;0];
C = [0,1,0,0];
D = 0;
```

Use these to define $\mathrm{G}(\mathrm{s})$:
$\mathrm{G}=\mathrm{ss}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})$
Once $\mathrm{G}(\mathrm{s})$ is in MATLAB, find the transfer function

```
zpk(G)
2 (s+5)
(s^2 + 2s + 10) ( s^2 + 6s + 30)
```

meaning:

$$
X_{2}=\left(\frac{2(s+5)}{\left(s^{2}+2 s+10\right)\left(s^{2}+6 s+30\right)}\right) F
$$

If you want to approximate this with a 2 nd-order model, keep the slowest pole and match the DC gain

$$
\begin{aligned}
D C= & \operatorname{evalfr}(G, 0) \\
& 0.0333333
\end{aligned}
$$

So

$$
X_{2} \approx\left(\frac{0.3333}{(s+1 \pm j 3)}\right) F
$$

To check the response in MATLAB, take the two step responses.
Input the 2nd-order approximation:

```
G2 = zpk([],[-1+j*3,-1-j*3],0.3333)
```

Take the step response of the two systems:

```
t = [0:0.1:100]';
x2 = step(G,t);
x2a = step (G2,t);
```

and plot

```
plot(t,x2,t,x2a)
    xlabel('Time (seconds)');
    ylabel('X2 (meters)');
```

Note that the 2nd-order model isn't that good of an approximation: the 'fast' pole is only 3 x faster.

Matlab Code:

$$
\begin{aligned}
& \mathrm{a} 11=\operatorname{zeros}(2,2) ; \\
& \mathrm{a} 12=\operatorname{eye}(2,2) ; \\
& \mathrm{a} 21=[-20,10 ; 10,-20] ; \\
& \mathrm{a} 22=[-4,2 ; 2,-4] ; \\
& \mathrm{A}=[\mathrm{a} 11, \mathrm{a} 12 ; \mathrm{a} 21, \mathrm{a} 22]
\end{aligned}
$$

0	0	1	0
0	0	0	1
-20	10	-4	2
10	-20	2	-4

$B=[0 ; 0 ; 1 ; 0] ;$
C $=[0,1,0,0]$;
D = 0;
$G=\operatorname{ss}(A, B, C, D) ;$
zpk(G)

$$
2(s+5)
$$

$\left(s^{\wedge} 2+2 s+10\right)\left(s^{\wedge} 2+6 s+30\right)$
$t f(G)$

$s^{\wedge} 4+8 s^{\wedge} 3+52 s^{\wedge} 2+120 s+300$

$$
X_{2}=\left(\frac{2(s+5)}{(s+3 \pm j 4.58)(s+1 \pm j 3)}\right) F
$$

Wave Equation: (fun stuff)

If you have N mass-spring systems in series, you get coupled 2nd-order differential equations, termed the Wave equation

$$
\frac{d^{2} x_{i}}{d t^{2}}=f\left(x_{i-1}, x_{i}, x_{i+1}\right)
$$

Cascaded Mass-Spring Systems creates the Wave equation
This is almost exactly like the heat equation. When you write the node equation for mass 2 , you get

$$
\begin{aligned}
& M s^{2} x_{2}=K x_{1}-2 K x_{2}+K x_{3} \\
& s^{2} x_{2}=\left(\frac{K}{M}\right) x_{1}-\left(\frac{2 K}{M}\right) x_{2}+\left(\frac{K}{M}\right) x_{3}
\end{aligned}
$$

which is exactly the same form as we got for the heat equation, except that the result is the second derivative of x 2 rather than the first derivative. This has a profound impact on how the system behaves.

For example, assume you have

- 30 nodes (30 finite elements) and
- K/M = 50
- Friction $=0.01$ at each node

If you flick the input $(\mathrm{x}(0))$ to launch a wave, then at $\mathrm{t}=2$ seconds, the states look like the following:

$t=2$ seconds. Wave traveling to the right

In terms of a transfer function, this is really ugly.

- There are 30 finite elements, each with two energy states (kinetic and potential energy)
- The resulting system is 60th order
- All 60 poles are on the jw axis - all 60 are dominant.

If you did find the transfer function and plot the step response, you would see how the right endpoint responds ($\mathrm{x}(30)$). If you run the following simulation, you see how all 30 points respond.

```
Wave.m
    \(\mathrm{N}=30\); \(\%\) number of nodes
    \(\mathrm{V}=\operatorname{zeros}(\mathrm{N}, 1) ;\)
    \(d V=\operatorname{zeros}(N, 1) ;\)
    \(t=0 ;\)
    \(d t=0.01\);
    while(t < 100)
        if (t < 2) V0 = 100 * ( ( sin(0.5*pi*t) ) ^2 );
        else V0 = 0;
        end
        \(d d V(1)=50 * V 0-100 * V(1)+50 * V(2)-0.01 * d V(1) ;\)
        for \(i=2: N-1\)
        \(d d V(i)=50 * V(i-1)-100 * V(i)+50 * V(i+1)-0.01 * d V(i) ;\)
        end
        \(\operatorname{ddV}(\mathrm{N})=50 * V(\mathrm{~N}-1)-50 * V(\mathrm{~N})-0.01 * d V(\mathrm{~N}) ;\)
        for \(i=1: N\)
        \(d V(i)=d V(i)+d d V(i) * d t ;\)
        \(V(i)=V(i)+d V(i) * d t ;\)
        end
        \(t=t+d t ;\)
        plot ([0:N], [V0;V],'.-');
        ylim([-100,150]);
        pause(0.01);
        end
```

