## Rotational Systems \& Gears

## Rotational Systems

Rotational systems behave exactly like translational systems, except that

- The state (angle) is denoted with $\theta$ rather than x (position)
- Inertia is called J (rather than $\mathbf{M}$ )
- Friction is called D (rather than B)

Otherwise, the symbols, circuit equivalent, and analysis for rotational systems is exactly like translational systems.

## Electrical Circuits

| $\mathrm{Z}=\mathrm{R}$ (resistor) | $I=\frac{1}{Z} V$ |
| :---: | :--- |
| $\mathrm{Z}=\mathrm{Ls}$ (inductor) |  |
| $\mathrm{Z}=1 / \mathrm{Cs}$ (capacitor) |  |

Translational Systems

| Inertia | $F=M s^{2} X$ |
| :---: | :---: |
| Friction | $F=B S X$ |
| Spring | $F=K X$ |

Rotational Systems
Inertia $\quad T=J s^{2} \theta$

Friction
D
$T=D s \theta$


Spring
K
$T=K \theta$

Example: Draw the circuit equivalent and write the equations of motion for the following rotational system.


Inertia - Spring Rotational System
Solution: Note that each term is an admittance. Draw the circuit equivalent. There are three masses, which result in three voltages nodes (each angle corresponds to a voltage node). Each element corresponds to an impedance.


## Circuit Equivalent

The voltage node equations are then:

$$
\begin{aligned}
& \left(J_{1} s^{2}+D_{1} s+K_{1}\right) \theta_{1}-\left(K_{1}\right) \theta_{2}=T \\
& \left(J_{2} s^{2}+D_{2} s+K_{1}+K_{2}\right) \theta_{2}-\left(K_{1}\right) \theta_{1}-\left(K_{2}\right) \theta_{2}=0 \\
& \left(J_{3} s^{2}+D_{3} s+K_{2}+K_{3}\right) \theta_{3}-\left(K_{2}\right) \theta_{2}=0
\end{aligned}
$$

Placing this in state-space form is identical to what we did with mass-spring systems. Solve for the highest derivative:

$$
\begin{aligned}
& s^{2} \theta_{1}=-\left(\frac{D_{1}}{J_{1}} s+\frac{K_{1}}{J_{1}}\right) \theta_{1}+\left(\frac{K_{1}}{J_{1}}\right) \theta_{2}+\left(\frac{1}{J_{1}}\right) T \\
& s^{2} \theta_{2}=-\left(\frac{D_{2} s}{J_{2}}+\frac{K_{1}+K_{2}}{J_{2}}\right) \theta_{2}+\left(\frac{K_{1}}{J_{2}}\right) \theta_{1}+\left(\frac{K_{2}}{J_{2}}\right) \theta_{2} \\
& s^{2} \theta_{3}=-\left(\frac{D_{3} s}{J_{3}}+\frac{K_{2}+K_{3}}{J_{3}}\right) \theta_{3}+\left(\frac{K_{2}}{J_{3}}\right) \theta_{2}
\end{aligned}
$$

Defining the states to be the angles and the derivatives, in matrix form this is

$$
\left[\begin{array}{c}
s \theta_{1} \\
s \theta_{2} \\
s \theta_{3} \\
\cdots \\
s^{2} \theta_{1} \\
s^{2} \theta_{2} \\
s^{2} \theta_{3}
\end{array}\right]=\left[\begin{array}{ccccccc}
0 & 0 & 0 & \vdots & 1 & 0 & 0 \\
0 & 0 & 0 & \vdots & 0 & 1 & 0 \\
0 & 0 & 0 & \vdots & 0 & 0 & 1 \\
\cdots & \cdots & \cdots & & \cdots & \cdots & \cdots \\
\frac{-K_{1}}{J_{1}} & \frac{-K_{1}}{J_{1}} & 0 & \vdots & \frac{-D_{1}}{J_{1}} & 0 & 0 \\
\frac{K_{1}}{J_{1}} & \frac{-K_{1}-K_{2}}{J_{1}} & \frac{K_{2}}{J_{1}} & \vdots & 0 & \frac{-D_{2}}{J_{2}} & 0 \\
0 & \frac{K_{2}}{J_{1}} & \frac{-K_{2}-K_{3}}{J_{1}} & \vdots & 0 & 0 & \frac{-D_{3}}{J_{3}}
\end{array}\right]\left[\begin{array}{c}
\theta_{1} \\
\theta_{2} \\
\theta_{3} \\
\cdots \\
s \theta_{1} \\
s \theta_{2} \\
s \theta_{3}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
0 \\
\cdots \\
\frac{1}{J_{1}} \\
0 \\
0
\end{array}\right] T
$$

## Gears



Gears are like transformers:

- They convert one speed to another as the gear ratio,
- They convert one impedance to another as the gear ratio squared.

The governing equation for a gear is that the distance traveled at the interface must be the same for both gears:

$$
\begin{aligned}
& \text { distance }=r \theta \\
& d_{1}=r_{1} \theta_{1} \\
& d_{2}=r_{2} \theta_{2} \\
& d_{1}=d_{2} \\
& r_{1} \theta_{1}=r_{2} \theta_{2}
\end{aligned}
$$

or

$$
\theta_{1}=\left(\frac{r_{2}}{r_{1}}\right) \theta_{2}
$$



Two gears, where gear 1 turns gear 2 The gear which is $4 x$ smaller will turn $4 x$ faster

The torques are also related by the turn ration. Torque is:

$$
\begin{aligned}
& T_{1}=F_{1} r_{1} \\
& T_{2}=F_{2} r_{2}
\end{aligned}
$$

At the tip, each force has an equal and opposite force:

$$
F_{1}=F_{2}
$$

resulting in

$$
\begin{aligned}
& \frac{T_{1}}{r_{1}}=\frac{T_{2}}{r_{2}} \\
& T_{1}=\left(\frac{r_{1}}{r_{2}}\right) T_{2}
\end{aligned}
$$

Admittance is the ratio

$$
T_{1}=M s^{2} \theta_{1}
$$

Relative to the other side of the gear:

$$
\left(\frac{r_{1}}{r_{2}}\right) T_{2}=\left(M s^{2}\right)\left(\frac{r_{2}}{r_{1}}\right) \theta_{2}
$$

or

$$
T_{2}=\left(\frac{r_{2}}{r_{1}}\right)^{2}\left(M s^{2}\right) \theta_{2}
$$

## Impedances go through a gear as the turn ratio squared

## Example:


i) Draw the circuit equivalent with the gears


Circuit Equivalent for Rotational Gear System
ii) Take out the gears by scaling the impedance by the turn ratio squared

$$
Y_{\text {new }} \Rightarrow\left(\frac{\text { where going to }}{\text { where coming from }}\right)^{2} Y_{\text {old }}
$$



Circuit equivalent with the gears (transformers) removed
iii) Write the equations of motion (i.e. write the voltage node equations, noting that all terms are impedance). (note: $\phi$ is used rather than $\theta$ as a reminder that the node voltages are scaled by the gear ratio.)

$$
\begin{aligned}
& \left(J_{1} s^{2}+D_{1} s+K_{1}\right) \phi_{1}-\left(K_{1}\right) \phi_{2}=T \\
& \left(\frac{J_{2}}{5^{2}} s^{2}+\frac{D_{2}}{5^{2}} s+K_{1}+\frac{K_{2}}{5^{2}}\right) \phi_{2}-\left(K_{1}\right) \phi_{1}-\left(\frac{K_{2}}{5^{2}}\right) \phi_{3}=0 \\
& \left(\frac{J_{3}}{25^{2}} s^{2}+\frac{D_{3}}{25^{2}} s+K_{1}+\frac{K_{2}}{5^{2}}\right) \phi_{3}-\left(\frac{K_{2}}{5^{2}}\right) \phi_{2}=0
\end{aligned}
$$

From this point onward, it's the same as before.

## DC Servo Motors

A DC Servo Motor is a type of motor which is often used with rotational systems. It has the advantage that

- Torque is proportional to current (making it easy to apply torques to a rotational system)
- Spins when a constant voltage is applied (operating as a motor), or
- Provides a constant voltage when spun (operating as a DC generator - a.k.a. a dynamo)


A DC servo motor is a 2-lead motor which spins when a constant voltage is applied (motor) or produces a constant voltage when spun (generator) (image from http://www.electrical-knowhow.com/2012/05/classification-of-electric-motors.html)

Internally, a DC motor has

- A permanent magnet (field winding) on the outside,
- An electromagnet on the inside (armature), and
- A commutator which switches the polarity of the current (voltage) so that the torque remains in the same direction as the motor spins.

A DC servo motor is essentially an electromagnet, with the following circuit equivalent:


Circuit equivalent for a DC servo motor

Kt is a constant for the motor. It describes how the motor works as a generator, creating a back voltage proportional to speed

$$
E_{a}=K_{t} \frac{d \theta}{d t}=K_{t} \omega
$$

as well as a motor where the torque is proportional to the armature current

$$
T=K_{t} I_{a}
$$

It isn't obvious, but Kt is the same for both equations. To see this, note that power out $=$ power in

$$
\begin{aligned}
& P_{\text {in }}=P_{\text {out }} \\
& E_{a} I_{a}=T \omega
\end{aligned}
$$

Substituting for Ea and T :

$$
\begin{aligned}
& \left(K_{t 1} \omega\right) I_{a}=\left(K_{t_{2}} I_{a}\right) \omega \\
& K_{t 1}=K_{t_{2}}
\end{aligned}
$$

Here you can see that the two constants are the same.

The equations for this are then
or

$$
\begin{aligned}
& V_{a}=K_{t}(s Q)+\left(R_{a}+L_{a} s\right) I_{a} \\
& K_{t} I_{a}=\left(J s^{2}+D s\right) Q
\end{aligned}
$$

Solving gives

$$
Q=\left(\frac{1}{s}\right)\left(\frac{K_{t}}{(J s+D)\left(L_{a} s+R_{a}\right)+K_{t}^{2}}\right) V_{a}
$$

if the output is angle $(\mathrm{Q})$ or

$$
\omega=\frac{d Q}{d t}=\left(\frac{K_{t}}{(J s+D)\left(L_{a} s+R_{a}\right)+K_{t}^{2}}\right) V_{a}
$$

if the output is speed.

Example: Determine the transfer function for a DC servo motor with the following specifications:
(http://www.servosystems.com/electrocraft_dcbrush_rdm103.htm)

- $K_{t}=0.03 \mathrm{Nm} / \mathrm{A}$
- Terminal resistance $=1.6 \quad(\mathrm{Ra})$
- Armature inductance $=4.1 \mathrm{mH}(\mathrm{La})$
- Rotor Inertia $=0.008 \mathrm{oz}-\mathrm{in} / \mathrm{sec} / \mathrm{sec}$ ugh - english units
- Damping Contant $=0.25 \mathrm{oz}-\mathrm{in} / \mathrm{krpm}$ double ugh
- Torque Constant $=13.7 \mathrm{oz}-\mathrm{in} / \mathrm{amp}$
- Peak current $=34 \mathrm{amps}$
- Max operating speed $=6000 \mathrm{rpm}$

You need to translate to metric:
Kt: $\quad 13.7 \frac{o z-i n}{a m p}\left(\frac{1 m}{39.4 i n}\right)\left(\frac{1 l b}{16 o z}\right)\left(\frac{0.454 k g}{l b}\right)\left(\frac{9.8 N}{k g}\right)=0.0967\left(\frac{N \cdot m}{A}\right)$
D: $\quad 0.25\left(\frac{\text { ozin } \cdot \mathrm{min}}{\text { krev }}\right)\left(\frac{1 \mathrm{Nm}}{141.7 o z-\text {-in }}\right)\left(\frac{60 \mathrm{sec}}{\min }\right)\left(\frac{\mathrm{krev}}{1000 \mathrm{rev}}\right)\left(\frac{\mathrm{rev}}{2 \pi r a d}\right)=1.68 \cdot 10^{-5}\left(\frac{\mathrm{Nm}}{\text { rad } \mathrm{sec}}\right)$
J: $\quad 0.008\left(\frac{o z-i n}{\mathrm{sec}^{2}}\right)\left(\frac{\mathrm{Nm}}{141.7 o z-i n}\right)\left(\frac{\mathrm{kg}}{9.8 N}\right)=5.76 \cdot 10^{-6}\left(\frac{\mathrm{~kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2}}\right)$

Plugging in numbers:

$$
Q=\left(\frac{10.31 \cdot 630^{2}}{s\left(s^{2}+393 s+630^{2}\right)}\right) V=\left(\frac{10.31(630)^{2}}{s(s+196.5+j 598)(s+196.5-j 598)}\right) V
$$

This means....

- If you apply a constant +12 V to the motor, the motor spins at a speed of $123.72 \mathrm{rad} / \mathrm{sec}$. $\left(10.31^{*} 12\right)$
- It takes about 20 ms for the motor to get up to speed $(\mathrm{Ts}=4 / 196)$

The motor will overshoot it's final speed $(123 \mathrm{rad} / \mathrm{sec})$ by $35 \%($ damping ratio $=0.3119)$

## Gears and Wheels:

It isn't obvious, but a wheel is a type of gear or transformer. The circuit symbol for a gear


Symbol for a gear: 5Q1 = Q2
means

$$
5 \cdot \theta_{1}=1 \cdot \theta_{2}
$$

A wheel converts rotational motion to translational motion as

$$
x=r \theta
$$

where

- x is the displacement in meters
- $r$ is the radius of the wheel and
- $\theta$ is the angle in radians.

Example: Find the dynamics of the previous motor if it is driving a cart with a mass of 2 kg through a wheel with a diameter of $3 \mathrm{~cm}(0.03 \mathrm{~m})$


A wheel is a gear which transates rotation to displacement
First, draw the circuit equivalent


Circuit equivalent for a DC servo motor connected to a wheel and a 2 kg cart
Remove the gear by translating the 2 kg mass to the motor angle

$$
x=r \theta
$$

$$
2 \mathrm{~kg} \cdot\left(\frac{r}{1}\right)^{2}=0.0018 \mathrm{~kg} \mathrm{~m}^{2}
$$

The net inertia is then

$$
J_{\text {motor }}+J_{\text {mass }}=5.76 \cdot 10^{-6}+0.0018=0.00180576
$$

The motor dynamics are then

$$
\theta=\left(\frac{13061}{s(s+3.273)(s+387)}\right) V_{a}
$$

The motor dynamics have a complex pole - which might seem odd. Motors are intended to be used to drive something, however. If you drive a cart with a mass of 2 kg through wheels with a radius of 3 cm , the complex poles shift to $\{-3.273,-387\}$. The complex poles will shift (and probably become real) when connected to a load.

