
Lead Compensators using Root Locus

Introduction

Given a feedback system around a plant, G(s)

G(s)K(s)
R E U Y

plantcompensator

you want to choose K as large as possible since this results in

Good tracking (error constants are proportional to k) and

A fast response

The problem is that too much gain results in too much overshoot. Likewise, you usually pick the highest gain

that meets your requirements, such as the overshoot being 20% or less.

If the resulting closed-loop system is too slow, you need to pull the root locus left somehow. That's the purpose

of a lead compensator.

Lead Compensator Design (take 1)

To design a lead compensator, the first trick is to determine which pole to cancel. To see which one, consider the

5th-order system from our previous lecture:

G(s) = 


361.2378

(s+15.65)(s+10.1)(s+5.439)(s+2.081)(s+0.3234)




with the following root locus shown on the following page.

From before, with gain compensation (K(s) = k), the best you can do (meaning largest k) with the overshoot

being no more than 20% is

Gain Compensation
K(s) = k

K(s) Closed-Loop Dominant
Pole(s)

Kp 2% Settling Time

 5.5117 s = -0.6942 + j1.3884 3.4412 5.76 seconds

NDSU Lead Compensatiors using Root Locus ECE 461/661

JSG 1 July 24, 2020

The dominant pole(s) are the right-most portion of the root locus. This is the part we want to shift left to speed

up the system.

Clearly, canceling the fast pole at -15.65 and moving it left won't have much effect on the right-most portion of

the root locus. That's not the pole we want to cancel. Instead, we want to cancel either the pole at -0.3234 or the

pole at -2.081.

Root Locus for G(s). s = -0.7 + j1.36 for a damping ratio of 0.4559

The dominant pole(s) are the right-most portion of the root locus. This is the part we want to shift left to speed

up the system.

Clearly, canceling the fast pole at -15.65 and moving it left won't have much effect on the right-most portion of

the root locus. That's not the pole we want to cancel. Instead, we want to cancel either the pole at -0.3234 or the

pole at -2.081. To see which one you should cancel, design a lead compensator for each case.

If we cancel the pole at -0.3242, then

K(s) = k
s+0.3242

s+3.242



and

GK = 


361.2378k

(s+15.65)(s+10.1)(s+5.439)(s+2.081)(s+3.234)




Now, the problem of finding 'k' is the same as we did before:

Find the point on the damping line which crosses the root locus.

At this point, pick k so that GK = -1

NDSU Lead Compensatiors using Root Locus ECE 461/661

JSG 2 July 24, 2020

Sketching the root locus of GK gives:

Root Locus of 
361.2378k

(s+15.65)(s+10.1)(s+5.439)(s+2.081)(s+3.234)




The point on the root locus that intersects the damping line is

s = -1.2531 + j2.5062

At this point




361.2378

(s+15.65)(s+10.1)(s+5.439)(s+2.081)(s+3.234)




s=−1.2531+j2.5062

= 0.0654∠1800

As a check, the angle is 180 degrees, meaning that the point found is on the root locus. k is then

k =
1

0.0654
= 15.30

and

K(s) = 15.30
s+0.3242

s+3.242



This results in the 2% settling time being

 secondsT2% =
4

1.2531
= 3.1921

The error constant, Kp, is

Kp = (G(s) ⋅ K(s))s→0 = 0.9554

NDSU Lead Compensatiors using Root Locus ECE 461/661

JSG 3 July 24, 2020

For comparison, cancel the next slowest pole at -2.081

K(s) = k
s+2.081

s+20.81



This results in the open-loop system being

GK = 


361.2378k

(s+20.81)(s+15.65)(s+10.1)(s+5.439)(s+0.3234)




which results in the following (improved) root locus

Root Locus for K(s) = k
s+2.081

s+20.81



For a damping ratio of 0.4559, find the spot on the (new) root locus which intersects this damping line

s = -1.3501 + j2.7002

At this point, pick k so that GK = -1




361.2378

(s+20.81)(s+15.65)(s+10.1)(s+5.439)(s+0.3234)




s=−1.3501+j2.7002

= 0.0097∠1800

meaning

k =
1

0.0097
= 102.59

and

K(s) = 102.59
s+2.081

s+20.81



NDSU Lead Compensatiors using Root Locus ECE 461/661

JSG 4 July 24, 2020

The resulting system will have a 2% settling time of

 secondsT2% =
4

1.3501
= 2.9627

and an error constant of

Kp = (G(s) ⋅ K(s))s=0 = 6.4052

These results are summarized in the following table:

Lead Compensation
K(s) = k (s+a) / (s+10a)

K(s) Closed-Loop Dominant
Pole(s)

U at t=0
K(s) as s -> infinity

Kp 2% Settling Time
seconds

 5.5117 s = -0.6942 + j1.3884 5.5117 3.4412 5.76

15.30
s+0.3242

s+3.242



s = -1.2531 + j2.5062 15.30 0.9554 3.19

102.59
s+2.081

s+20.81



s = -1.3501 + j2.7002 102.59 6.4052 2.96

Note that canceling the pole at -2.081 resulted in

A slightly faster system

With a much larger error constant, Kp, meaning better tracking

As well as a much larger value of U at t=0

This is due to the pole at -0.3242 being close to the origin. Ideally, we'd like it to be a type-1 system. It's not, but

the pole at -0.3242 is closed to s=0, which improves the tracking at DC. You likewise want to keep this pole for

tracking and cancel the next slowest pole: the one at -2.081

This results in the following rule of thumb:

Keep one pole at or near s=0.

Pick the zero of the lead compensator to cancel the next slowest (stable) pole.

The large value of U at t=0 results from the 10:1 ratio of the pole to the zero in the lead compensator - which

makes the input at t=0 roughly 10x the input without the lead compensator. This larger input speeds up the

system. It also places greater demands on the input and the system.

This results in the other rule of thumb for designing lead compensators:

Pick the pole 3 to 10 times larger than the zero

10 is a nice number in that it pulls the root locus further left, speeding up the system. It results in an input 10x

larger than before, however, which can strain the system.

NDSU Lead Compensatiors using Root Locus ECE 461/661

JSG 5 July 24, 2020

The step response of the lead compensated system is from the following Matlab code

>> G = zpk([],[-0.3243,-2.081,-5.439,-10.1,-15.65], 361.2378);
>> K = zpk(-2.081, -20.81, 101.61)

101.61 (s+2.081)

 (s+20.81)

>> t = [0:0.01:5]';
>> Gcl = minreal(G*K / (1+G*K));
>> y = step(Gcl, t);
>> plot(t,y);

Step Response for the Gain Compensated System (red) and Lead Compensated System (blue).

Note that the lead compensator

Sped up the system, and

Reduced the steady-state error

3 is a nice number in that it only requires you to slam the input 3x harder to speed up the system, but it doesn't

pull the root locus as far left.

NDSU Lead Compensatiors using Root Locus ECE 461/661

JSG 6 July 24, 2020

Circuit Implementation of a Lead Compensator

To implement

K(s) = 101.61
s+2.081

s+20.81



use the following circuit. Note that it has 4 degrees of freedom (the R's and C's) with 3 constraints (the gains for

K(s)). This means something is arbitrary. Let R2 = 1M.

As , s → ∞

The capacitor shorts out Rb, resulting in one unknown (Ra)

K(s) = 101.61

This tells you that

101.61 =
R2

Ra

Ra = 9.84k

At s = 0

K(s) = 10.161

The capacitor is an open circuit, meaning

R2

Ra+Rb
= 10.161

Rb = 88.56k

You also know this from the 10:1 ratio of the pole to the zero.

(Ra + Rb) = 10 Ra,

Rb = 9 Ra

C makes Ra and Rb a variable resistor

At low frequencies, the input resistance is Ra + Rb

At high frequencies, the resistance is Ra

You start to short out Rb when Rb = 1 / Cs

You start to short out Rb at 2.081 rad/sec

1

RbC
= 2.081

C = 5.42uF

The resulting op-amp circuit is thus:

NDSU Lead Compensatiors using Root Locus ECE 461/661

JSG 7 July 24, 2020

1M

9.84k 88.56k

5.42uF

Ra Rb

C

R2

Lead Compensator Circuit for K(s)

Software Implementation of a Lead Compensator

In software, this is implemented by making K(s) a proper fraction:

K(s) = 101.61
s+2.081

s+20.81



K(s) = 101.61
s+20.81−18.729

s+20.81



K(s) = 101.611 −
18.729

s+20.81



Add a dummy state, Z, which is

Z = 0;

R = 100;

while(t < 100)

 E = R - V(10);

 dZ = -20.81*Z + 18.729*E;

 V0 = 101.61 * (E - Z);

 dV(1) = 10*V0 - 20.1*V(1) + 10*V(2);
 dV(2) = 10*V(1) - 20.1*V(2) + 10*V(3);
 dV(3) = 10*V(2) - 20.1*V(3) + 10*V(4);
 dV(4) = 10*V(3) - 20.1*V(4) + 10*V(5);
 dV(5) = 10*V(4) - 20.1*V(5) + 10*V(6);
 dV(6) = 10*V(5) - 20.1*V(6) + 10*V(7);
 dV(7) = 10*V(6) - 20.1*V(7) + 10*V(8);
 dV(8) = 10*V(7) - 20.1*V(8) + 10*V(9);
 dV(9) = 10*V(8) - 20.1*V(9) + 10*V(10);
 dV(10) = 10*V(9) - 10.1*V(10);

 Z = Z + dZ*dt;

 V = V + dV*dt;

NDSU Lead Compensatiors using Root Locus ECE 461/661

JSG 8 July 24, 2020

 t = t + dt;
 .
 .
 .

Lead Compensators (take 2).

If the system still isn't fast enough, add another lead compensator. Pick the second lead compensator to cancel the

next slowest pole.

K(s) = k
s+2.081

s+20.81





s+5.439

s+53.39



GK = 


361.2378

(s+15.65)(s+10.1)(s+5.439)(s+2.081)(s+0.3234)


 ⋅ k

s+2.081

s+20.81





s+5.439

s+53.39



GK = 


361.2378k

(s+15.65)(s+10.1)(s+54.39)(s+20.81)(s+0.3234)




Now the root locus looks like the following:

>> k = logspace(-2,2,1000)';
>> GK = zpk([],[-15.65,-10.1,-5.439,-20.81,-3.234], 361.2378);
>> rlocus(GK,k);

Root Locus for G(s) with two lead compensators

The point on this root locus which intersects the 0.4559 damping line is

s = -2.2463 + j4.4925

At this point

NDSU Lead Compensatiors using Root Locus ECE 461/661

JSG 9 July 24, 2020




361.2378k

(s+15.65)(s+10.1)(s+54.39)(s+20.81)(s+0.3234)




s=−2.2463+j4.4925

= 0.0006∠1800

resulting in

k =
1

0.006
= 1729.60

meaning

K(s) = 1729.60
s+2.081

s+20.81





s+5.439

s+53.39



With this second lead compensator, the system's specifications are:

Lead Compensation
K(s) = k (s+a) / (s+10a)

K(s) Closed-Loop Dominant
Pole(s)

U at t = 0
K(s) as s -> infinity

Kp T2%

seconds

 5.5117 s = -0.6942 + j1.3884 5.5117 3.4412 5.76

15.30
s+0.3242

s+3.242



s = -1.2531 + j2.5062 15.3 0.9554 3.19

102.59
s+2.081

s+20.81



s = -1.3501 + j2.7002 102.59 6.4052 2.96

1729.60
s+2.081

s+20.81





s+5.439

s+53.39



s = -2.2463 + j4.4925 1729.60 10.7987 1.78

The closed-loop system's step response is as follows:

Step Response for the Gain (red), Lead (blue) and Two Lead (green) Compensated Systems

NDSU Lead Compensatiors using Root Locus ECE 461/661

JSG 10 July 24, 2020

Note, as expected, the 2nd lead compensator

Speeds up the closed-loop system,

Gives better tracking, and

Requires the input at t=0 to be 313x larger than it was with a gain compensator.

In theory, you can make a Chevette go from 0 to 60mph in 0.1 second. In practice, the input is limited. Once you

start to saturate the input, there's no point in trying to speed up the system.

A circuit to implement this compensator would be

K(s) = 1729.60
s+2.081

s+20.81





s+5.439

s+54.39



K(s) = 
101.61s+2.081

s+20.81



17.29 s+5.439

s+54.39



9.84k 88.56k

5.42uF
1M

57.8k 520.5k

0.3532uF
1M

1 : 9 ratio

1/RC = 5.43

1 : 9 ratio

1M / 9.84k = 101.61
1M / 57.8k = 17.29

Circuit to implement a 2-stage lead compensator

NDSU Lead Compensatiors using Root Locus ECE 461/661

JSG 11 July 24, 2020

