NDSU Root Locus in the z-Domain ECE 461/661

Root Locus in the z-Domain

Discussion:

Relative to the microcontroller, a feedback system looks like it's a discrete-time system. It looks like it's in the
z-domain. The goal is to find the compensator, K(z), which gives a 'good' response.
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Mathematically, the open-loop transfer function is
Y=H(z)G)KR)E

where H(z) is the transfer function of the sample and hold. This is approximately a 1/2 sample delay which is
often ignored or lumped into G():

H() — e—sT/2

If you ignore H, the closed-loop transfer function is

_ [ 6k
Y= (1+GK)R

If GK has zeros and poles:
GK = ki

the closed-loop transfer function becomes

— | k=
Y= (pjcz)E

The roots of the closed-loop system are then just as they were in the s-plane:

p(z)+kz(z) =0

Mathematically, the roots to this polynomial don't care if the variable is 's', 'z', or anything else. The roots (and
hence root locus plot) behave just the same in the s-plans as they do in the z-plane.

The only difference in the z-plane is how you interpret the meaning of the pole locations.
Recall the relationship between the s-plane and the z-plane is
7= esT

This causes the damping lines in the s-plane to spiral in the z-plane as follows:
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The different points on this plane result in different decay rates.

Like the s-plane, where you place the dominant pole in the z-plane determines the response of the closed-loop
system. For example, if the dominant pole is on the real axis between (0, 1), the system decays exponentially

with a 2% settling time of
zZ£=0.02

__1n(0.02)
T In(z)

For example, a pole at z = 0.95 has a 2% settling time of 73 samples (round up)

__1n(0.02)
k= In(0.95)

=72.26 samples

A pole at z = 0.8 has a 2% settling time of 18 samples

_ In(0.02) _
k= o8 = 17.53 samples

Similarly, for any pole, the amplitude tells you the settling time as

lz|* = 0.02

_ 1n(0.02)
k= In(lz])
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Time (sec)

Step Response of a Discrete-Time System with a Pole at { 0.95 (red), 0.9 (blue), 0.8 (green), and 0.7 (pink). T =0.01 second
If the amplitude of the pole is 0.95 (meaning a 2% settling time of 73 samples) and you vary the angle of the pole,
the frequency of oscillation will be
- 13600
perlod—m samples
Poles at
0.95£+9° takes 40 samples for a period

0.95£+18° takes 20 samples for a period

2.00
b
1.75

1.50

)| 1.25

1.00
75
.50
25¢-

b 0 A 2 3 4 5 .6 7 .8 9 1
Time (sec)

Step Response for Poles at 0.95 / 9 degrees (blue) and 18 degrees (pink). The angle of the pole tells you the frequency of oscillation
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The damping ratio is sort of the angle of the pole - skewed as a log spiral. My preference for determining the
damping ratio is to convert to and from the s-plane as

7= esT

For example, with a sampling rate of T = 0.1 second

Damping Ratio Pole in the s-plane Poles in the z-plane
0 -1£+90° 0.9950 + j0.0998
0.2 -1£+78.46° 0.9755 +j0.0959
0.4 -1££66.42° 0.9568 +j0.0879
0.6 -1£+£53.13° 0.9388 +j0.0753
0.8 -1£%36.86° 0.9214 +j0.0553
1 -1£+£0° 0.9048 + jO

The resulting step response as you vary the damping angle is identical to what you get in the s-plane

Step Response of G(z) with the damping ratio varying from 0.1 (max overshoot) to 1.0 in steps of 0.1

Just like in the s-plane, the root-locus in the z-plane tells you what kind of responses you can get by varying a
gain, k. The 'best' spot to select is usually

+ The largest gain (which results in a fast system with low error),
That meets your design criteria (such as no more than 20% overshoot in the step response)
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Example: Assume the system to be controlled is

—(—_1000
Gls) = ((s+5)(s+10)(s+20))

Design a digital compensator, K(z) = k, with a sampling rate of T = 10ms for

« No overshoot,
+  20% overshoot, and
« The maximum gain for stability.

Solution: First, convert G(s) to G(z). With T = 0.01 second

_ 0.00084132
G(z) = ((1—0.9512)(z—0.9048)(z—0.8187))

Now, draw the root locus of G(z) and add in the damping lines

In Matlab:

T = 0.01;

Gz = zpk(0, [0.9512, 0.9048, 0.8187], 0.0008413);
k

R

logspace (-2,2,1000) ';
= rlocus (G,k);

o\

draw the damping lines on this graph

hold on
s = [0:0.01:100] * (=1+3*2);
z = exp(s*T);

plot (real(z),imag(z), 'r")

s = [0:0.01:100] * (3*1);
z = exp(s*T);
plot (real(z),imag(z),'r")
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Root-Locus of G(z) with 0.4559 and 0.0 damping lines
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Note that
+ The damping lines depart from z = 1 (which is DC in the z-plane)
The damping lines are slightly bent. This is the log-spiral resulting from mapping s to z as e’T.

Once draw, find the spot on the root locus

a) No overshoot. This is the breakaway point on the root-locus
z=0.9305

At this point

( 0.0008413z

(2-0.9512)(z—0.9048)(z—0.8187) =13.1620£180°

) 7z=0.9305

The compensator gain is then

K=——=0.0760

13.1620

This results in a 2% settling time of

In(0.02)

tryg = 1(0.9305) — 54.3 samples (0.543 seconds)

The error constant, Kp, is the DC gain of G*K. Since G(s) and G(z) at DC is one
Kp =0.0760

I (o _076:— SOy 10 > Y]

$3+3557+3505+1000

Time (sec)

Step Response with K(z) chosen to place the poles at the breakaway point (no overshoot).
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b) 20% overshoot. This point on the root locus is

z=0.9513 +j0.0873

At this point
( 0.00084137 ) =0.58672180"
(@09512)(0.9048)(-08187) /) 95134j0.0873
K(z) is then

0.5867
The resulting 2% settling time is

_ 1n(0.02) B
12% = 1500.951340.0873]) 85.52 samples

Since the DC gain of G(s) and G(z) is one, the error constant Kp is K*1 or
Kp =1.7044

Checking in VisSim (using the actual analog system and a digital compensator with a sampling rate of 10ms)

D> 1.7044 - 1940
§9> 4 1 AT~ 153+3552+3503+1000 P>
<1 K]
- piot - [O]x]
LY > 1.0
LU
0.5

Time (sec)

Step Response with K(z) chosen for 20% overshoot

Note that the overshoot is almost 20%, as desired.
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¢) Max Gain for Stability (the jw crossing). The point that intersects with the unit circle is

z=0.9850 +j0.1723 =1£9.9215°

At this point
( 0.0008413z ) =0.10532180"
(&09512)(z-0.9048)=0818T) /' og504j0.1723
meaning

0.1053
With this K(z), the 2% settling time is infinite.

The frequency of oscillation is

£7=9.9215°
. 3600 _
period = 500150 — 36.28 samples = 0.3628 seconds
__1 _

f= Seriod = 2715 Hz

Checking in VisSim
e 05008 — [T o] 1 12
. 1 Y
Eg@’ 1 > s”+355°+350s+1000 ol

Time (sec)

Step Response with K(z) chosen to place the poles on the unit circle. The period of oscillations = 0.3628 seconds

Moral: Root-locus works in the z-plane just like it does in the s-plane. The only difference is how you interpret
the results.
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Alternate Method:

Note that when using root-locus techniques, you really only care about one point: the one where the angles add
up to 180 degrees. At this point

G-K=1£180°
When you have a digital compensator, you really have three terms:

G(s) * K(z) * sample and hold

— exp(sT/2) ——» Kz) —— G5 —>

Sample & Hold Compensator plant

The open-loop system has three terms:

The sample and hold adds a delay of 1/2 sample. For example, if you sample a 3Hz sine wave with T = 0.01
second, you get a 3Hz sine wave, delayed by Sms

Time (sec)

3Hz sine wave (blue) sampled at 10ms (red) results in a 3Hz sine wave delayed by 1/2 of a sample (5ms)

Likewise, you can solve the previous root-locus problems using numerical methods to find the point on the
damping line where

angle(G(s) - K(z) - e=*7"*) = 180°
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You're kind-of mixing planes with this approach. Since you only care about one point, however, you don't care.
You just

+ Guess the point, s

+  Compute the corresponding point in the z-plane as z = e*"
- Evaluate the above function, and

- Repeat until the angles add up to 180 degrees

Example: Find the gain, k, that results in 20% overshoot in the step response.

In Matlab, start with a guess of s =-5 + j10. Evaluate G(s)*delay

——>s = 5%( -1 + j*2);
-=>1000 / ( (s+5)*(s+10)*(s+20)) * exp(-s*T/2)
- 0.5009862 + 0.08824551

The angle isn't zero (the complex part is non-zero), so try a different s, such as 10% bigger

-->s = s*1.1;
——>1000 / ( (s+5)*(s+10)*(s+20)) *  exp(-s*T/2)
- 0.4037178 + 0.15246781

That made the complex part worse. If 10% bigger is bad, try 10% smaller

-->s = s*0.9;
——>1000 / ( (s+5)*(s+10)*(s+20)) *  exp(-s*T/2)
- 0.5110062 + 0.07963591

-->s = s*%0.9;
——>1000 / ( (s+5)*(s+10)*(s+20)) *  exp(-s*T/2)
- 0.6083330 - 0.03212541

Too far (there was a sign flip on the complex portion). Try 1% larger now.

-—>s = s*1.01;
-=>1000 / ( (s+5)*(s+10)*(s+20)) * exp(-s*T/2)
- 0.5999484 - 0.01991261

Too far (sign flip on the complex portion). Try 0.1% smaller

-—>s = s*0.999;
-=>1000 / ( (s+5)*(s+10)*(s+20)) * exp(-s*T/2)
- 0.5843619 + 0.00120121

Close enough. This results in
-—>k = 1/abs (ans)

1.7086736

which is about the same result we got with root locus techniques. It's a little more accurate, however, since you
don't have to approximate G(s) with G(z) with this method. Either way works - the lecture notes and homework
solutions use this latter method, however. (My calculator has a solver function).
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