Root Locus in the z-Domain

Discussion:

Relative to the microcontroller, a feedback system looks like it's a discrete-time system. It looks like it's in the z -domain. The goal is to find the compensator, $\mathrm{K}(\mathrm{z})$, which gives a 'good' response.

Mathematically, the open-loop transfer function is

$$
Y=H(z) G(z) K(z) E
$$

where $\mathrm{H}(\mathrm{z})$ is the transfer function of the sample and hold. This is approximately a $1 / 2$ sample delay which is often ignored or lumped into $G()$:

$$
H()=e^{-s T / 2}
$$

If you ignore H , the closed-loop transfer function is

$$
Y=\left(\frac{G K}{1+G K}\right) R
$$

If GK has zeros and poles:

$$
G K=k_{\bar{p}}^{z}
$$

the closed-loop transfer function becomes

$$
Y=\left(\frac{k z}{p+k z}\right) E
$$

The roots of the closed-loop system are then just as they were in the s-plane:

$$
p(z)+k z(z)=0
$$

Mathematically, the roots to this polynomial don't care if the variable is 's', 'z', or anything else. The roots (and hence root locus plot) behave just the same in the s-plans as they do in the z -plane.

The only difference in the z -plane is how you interpret the meaning of the pole locations.
Recall the relationship between the s-plane and the z-plane is

$$
z=e^{s T}
$$

This causes the damping lines in the s-plane to spiral in the z -plane as follows:

The different points on this plane result in different decay rates.

Like the s-plane, where you place the dominant pole in the z-plane determines the response of the closed-loop system. For example, if the dominant pole is on the real axis between $(0,1)$, the system decays exponentially with a 2% settling time of

$$
\begin{aligned}
& z^{k}=0.02 \\
& k=\frac{\ln (0.02)}{\ln (z)}
\end{aligned}
$$

For example, a pole at $\mathrm{z}=0.95$ has a 2% settling time of 73 samples (round up)

$$
k=\frac{\ln (0.02)}{\ln (0.95)}=72.26 \text { samples }
$$

A pole at $\mathrm{z}=0.8$ has a 2% settling time of 18 samples

$$
k=\frac{\ln (0.02)}{\ln (0.8)}=17.53 \text { samples }
$$

Similarly, for any pole, the amplitude tells you the settling time as

$$
\begin{aligned}
& |z|^{k}=0.02 \\
& k=\frac{\ln (0.02)}{\ln (|z|)}
\end{aligned}
$$

Step Response of a Discrete-Time System with a Pole at $\{0.95$ (red), 0.9 (blue), 0.8 (green), and 0.7 (pink). $T=0.01$ second

If the amplitude of the pole is 0.95 (meaning a 2% settling time of 73 samples) and you vary the angle of the pole, the frequency of oscillation will be

$$
\text { period }=\frac{360^{\circ}}{\text { angle }} \text { samples }
$$

Poles at

$0.95 \angle \pm 9^{0}$	takes 40 samples for a period
$0.95 \angle \pm 18^{0}$	takes 20 samples for a period

Step Response for Poles at 0.95 / 9 degrees (blue) and 18 degrees (pink). The angle of the pole tells you the frequency of oscillation

The damping ratio is sort of the angle of the pole - skewed as a log spiral. My preference for determining the damping ratio is to convert to and from the s-plane as

$$
z=e^{s T}
$$

For example, with a sampling rate of $\mathrm{T}=0.1$ second

Damping Ratio	Pole in the s-plane	Poles in the z-plane
0	$-1 \angle \pm 90^{0}$	$0.9950+\mathrm{j} 0.0998$
0.2	$-1 \angle \pm 78.46^{0}$	$0.9755+\mathrm{j} 0.0959$
0.4	$-1 \angle \pm 66.42^{0}$	$0.9568+\mathrm{j} 0.0879$
0.6	$-1 \angle \pm 53.13^{0}$	$0.9388+\mathrm{j} 0.0753$
0.8	$-1 \angle \pm 36.86^{0}$	$0.9214+\mathrm{j} 0.0553$
1	$-1 \angle \pm 0^{0}$	$0.9048+\mathrm{j} 0$

The resulting step response as you vary the damping angle is identical to what you get in the s-plane

Step Response of $G(z)$ with the damping ratio varying from 0.1 (max overshoot) to 1.0 in steps of 0.1

Just like in the s-plane, the root-locus in the z-plane tells you what kind of responses you can get by varying a gain, k . The 'best' spot to select is usually

- The largest gain (which results in a fast system with low error),
- That meets your design criteria (such as no more than 20% overshoot in the step response)

Example: Assume the system to be controlled is

$$
G(s)=\left(\frac{1000}{(s+5)(s+10)(s+20)}\right)
$$

Design a digital compensator, $\mathrm{K}(\mathrm{z})=\mathrm{k}$, with a sampling rate of $\mathrm{T}=10 \mathrm{~ms}$ for

- No overshoot,
- 20% overshoot, and
- The maximum gain for stability.

Solution: First, convert $\mathrm{G}(\mathrm{s})$ to $\mathrm{G}(\mathrm{z})$. With $\mathrm{T}=0.01$ second

$$
G(z) \approx\left(\frac{0.0008413 z}{(z-0.9512)(z-0.9048)(z-0.8187)}\right)
$$

Now, draw the root locus of $\mathrm{G}(\mathrm{z})$ and add in the damping lines
In Matlab:

```
T = 0.01;
Gz = zpk(0, [0.9512, 0.9048, 0.8187], 0.0008413);
k = logspace(-2,2,1000)';
R = rlocus(G,k);
% draw the damping lines on this graph
hold on
s = [0:0.01:100] * (-1+j*2);
z = exp(s*T);
plot(real(z),imag(z),'r')
s = [0:0.01:100] * (j*1);
z = exp(s*T);
plot(real(z),imag(z),'r')
```


Root-Locus of $\mathrm{G}(\mathrm{z})$ with 0.4559 and 0.0 damping lines

Note that

- The damping lines depart from $\mathrm{z}=1$ (which is DC in the z -plane)
- The damping lines are slightly bent. This is the log-spiral resulting from mapping s to z as $e^{s T}$.

Once draw, find the spot on the root locus
a) No overshoot. This is the breakaway point on the root-locus

$$
\mathrm{z}=0.9305
$$

At this point

$$
\left(\frac{0.0008413 z}{(z-0.9512)(z-0.9048)(z-0.8187)}\right)_{z=0.9305}=13.1620 \angle 180^{0}
$$

The compensator gain is then

$$
K=\frac{1}{13.1620}=0.0760
$$

This results in a 2% settling time of

$$
t_{2 \%}=\frac{\ln (0.02)}{\ln (0.9305)}=54.3 \text { samples } \quad(0.543 \text { seconds })
$$

The error constant, Kp , is the DC gain of $\mathrm{G} * \mathrm{~K}$. Since $\mathrm{G}(\mathrm{s})$ and $\mathrm{G}(\mathrm{z})$ at DC is one

$$
\mathrm{Kp}=0.0760
$$

Step Response with $\mathrm{K}(\mathrm{z})$ chosen to place the poles at the breakaway point (no overshoot).
b) $\mathbf{2 0 \%}$ overshoot. This point on the root locus is

$$
\mathrm{z}=0.9513+\mathrm{j} 0.0873
$$

At this point

$$
\left(\frac{0.0008413 z}{(z-0.9512)(z-0.9048)(z-0.8187)}\right)_{z=0.9513+j 0.0873}=0.5867 \angle 180^{0}
$$

$\mathrm{K}(\mathrm{z})$ is then

$$
K=\frac{1}{0.5867}=1.7044
$$

The resulting 2% settling time is

$$
t_{2 \%}=\frac{\ln (0.02)}{\ln (|0.9513+j 0.0873|)}=85.52 \text { samples }
$$

Since the DC gain of $G(s)$ and $G(z)$ is one, the error constant $K p$ is $K * 1$ or

$$
\mathrm{Kp}=1.7044
$$

Checking in VisSim (using the actual analog system and a digital compensator with a sampling rate of 10 ms)

Step Response with $\mathrm{K}(z)$ chosen for 20% overshoot

Note that the overshoot is almost 20%, as desired.
c) Max Gain for Stability (the jw crossing). The point that intersects with the unit circle is

$$
\mathrm{z}=0.9850+\mathrm{j} 0.1723=1 \angle 9.9215^{0}
$$

At this point

$$
\left(\frac{0.0008413 z}{(z-0.9512)(z-0.9048)(z-0.8187)}\right)_{z=0.9850+j 0.1723}=0.1053 \angle 180^{0}
$$

meaning

$$
K(z)=\frac{1}{0.1053}=9.5008
$$

With this $\mathrm{K}(\mathrm{z})$, the 2% settling time is infinite.
The frequency of oscillation is

$$
\angle z=9.9215^{\circ}
$$

$$
\text { period }=\frac{360^{0}}{9.9215^{0}}=36.28 \text { samples }=0.3628 \text { seconds }
$$

$$
f=\frac{1}{\text { period }}=2.75 \mathrm{~Hz}
$$

Checking in VisSim

Step Response with $\mathrm{K}(\mathrm{z})$ chosen to place the poles on the unit circle. The period of oscillations $=0.3628$ seconds

Moral: Root-locus works in the z-plane just like it does in the s-plane. The only difference is how you interpret the results.

Alternate Method:

Note that when using root-locus techniques, you really only care about one point: the one where the angles add up to 180 degrees. At this point

$$
G \cdot K=1 \angle 180^{\circ}
$$

When you have a digital compensator, you really have three terms:
$\mathrm{G}(\mathrm{s}) * \mathrm{~K}(\mathrm{z}) *$ sample and hold

The open-loop system has three terms:
The sample and hold adds a delay of $1 / 2$ sample. For example, if you sample a 3 Hz sine wave with $\mathrm{T}=0.01$ second, you get a 3 Hz sine wave, delayed by 5 ms

3 Hz sine wave (blue) sampled at 10 ms (red) results in a 3 Hz sine wave delayed by $1 / 2$ of a sample (5 ms)

Likewise, you can solve the previous root-locus problems using numerical methods to find the point on the damping line where

$$
\operatorname{angle}\left(G(s) \cdot K(z) \cdot e^{-s T / 2}\right)=180^{0}
$$

You're kind-of mixing planes with this approach. Since you only care about one point, however, you don't care. You just

- Guess the point, s
- Compute the corresponding point in the z-plane as $\mathrm{z}=\mathrm{e}^{\mathrm{sT}}$
- Evaluate the above function, and
- Repeat until the angles add up to 180 degrees

Example: Find the gain, k, that results in 20% overshoot in the step response.

In Matlab, start with a guess of $\mathrm{s}=-5+\mathrm{j} 10$. Evaluate $\mathrm{G}(\mathrm{s})$ *delay

```
-->s = 5*( -1 + j*2);
-->1000 / ( (s+5)*(s+10)*(s+20)) * exp(-s*T/2)
    - 0.5009862 + 0.0882455i
```

The angle isn't zero (the complex part is non-zero), so try a different s , such as 10% bigger

```
-->s = s*1.1;
-->1000 / ( (s+5)* (s+10)* (s+20)) * exp(-s*T/2)
    - 0.4037178 + 0.1524678i
```

That made the complex part worse. If 10% bigger is bad, try 10% smaller

```
-->s = s*0.9;
-->1000 / ( (s+5)* (s+10)*(s+20)) * exp(-s*T/2)
    - 0.5110062 + 0.0796359i
-->s = s*0.9;
-->1000 / ( (s+5)* (s+10)* (s+20)) * exp(-s*T/2)
    - 0.6083330 - 0.0321254i
```

Too far (there was a sign flip on the complex portion). Try 1% larger now.

```
-->s = s*1.01;
-->1000 / ( (s+5)* (s+10)* (s+20)) * exp(-s*T/2)
    - 0.5999484 - 0.0199126i
```

Too far (sign flip on the complex portion). Try 0.1% smaller

```
-->s = s*0.999;
-->1000 / ( (s+5)*(s+10)*(s+20)) * exp(-s*T/2)
    - 0.5843619 + 0.0012012i
```

Close enough. This results in

```
-->k = 1/abs(ans)
```


1.7086736

which is about the same result we got with root locus techniques. It's a little more accurate, however, since you don't have to approximate $\mathrm{G}(\mathrm{s})$ with $\mathrm{G}(\mathrm{z})$ with this method. Either way works - the lecture notes and homework solutions use this latter method, however. (My calculator has a solver function).

