
Root Locus in the z-Domain

Discussion:

Relative to the microcontroller, a feedback system looks like it's a discrete-time system.  It looks like it's in the

z-domain.  The goal is to find the compensator, K(z), which gives a 'good' response.

Sample

& Hold
K(z) G(s)

_

R E Y

Mathematically, the open-loop transfer function is

Y = H(z)G(z)K(z)E

where H(z) is the transfer function of the sample and hold.  This is approximately a 1/2 sample delay which is

often ignored or lumped into G():

H() = e−sT/2

If you ignore H, the closed-loop transfer function is

Y = 


GK

1+GK

R

If GK has zeros and poles:

GK = k
z
p

the closed-loop transfer function becomes

Y = 


kz

p+kz


E

The roots of the closed-loop system are then just as they were in the s-plane:

p(z) + kz(z) = 0

Mathematically, the roots to this polynomial don't care if the variable is 's', 'z', or anything else.  The roots (and

hence root locus plot) behave just the same in the s-plans as they do in the z-plane.

The only difference in the z-plane is how you interpret the meaning of the pole locations.  

Recall the relationship between the s-plane and the z-plane is

z = esT

This causes the damping lines in the s-plane to spiral in the z-plane as follows:
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The different points on this plane result in different decay rates.

Like the s-plane, where you place the dominant pole in the z-plane determines the response of the closed-loop

system.  For example, if the dominant pole is on the real axis between (0, 1), the system decays exponentially

with a 2% settling time of

zk = 0.02

k =
ln(0.02)

ln(z)

For example, a pole at z = 0.95 has a 2% settling time of 73 samples (round  up)

  samplesk =
ln(0.02)

ln(0.95)
= 72.26

A pole at z = 0.8 has a 2% settling time of 18 samples

 samplesk =
ln(0.02)

ln(0.8)
= 17.53

Similarly, for any pole, the amplitude tells you the settling time as

z k
= 0.02

k =
ln(0.02)

ln ( z )
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Step Response of a Discrete-Time System with a Pole at { 0.95 (red),  0.9 (blue), 0.8 (green), and 0.7 (pink).  T = 0.01 second

If the amplitude of the pole is 0.95 (meaning a 2% settling time of 73 samples) and you vary the angle of the pole,

the frequency of oscillation will be

  samplesperiod=
3600

angle

Poles at

takes 40 samples for a period0.95∠ ± 90

takes 20 samples for a period0.95∠ ± 180

Step Response for Poles at 0.95 / 9 degrees (blue) and 18 degrees (pink).  The angle of the pole tells you the frequency of oscillation
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The damping ratio is sort of the angle of the pole - skewed as a log spiral.  My preference for determining the

damping ratio is to convert to and from the s-plane as

z = esT

For example,  with a sampling rate of T = 0.1 second

Damping Ratio Pole in the s-plane Poles in the z-plane

0 -1∠ ± 900 0.9950 + j0.0998

0.2 -1∠ ± 78.460 0.9755 + j0.0959

0.4 -1∠ ± 66.420 0.9568 + j0.0879

0.6 -1∠ ± 53.130 0.9388 + j0.0753

0.8 -1∠ ± 36.860 0.9214 + j0.0553

1 -1∠ ± 00 0.9048 + j0

The resulting step response as you vary the damping angle is identical to what you get in the s-plane

Step Response of G(z) with the damping ratio varying from 0.1 (max overshoot) to 1.0 in steps of 0.1

Just like in the s-plane, the root-locus in the z-plane tells you what kind of responses you can get by varying a

gain, k.  The 'best' spot to select is usually

The largest gain (which results in a fast system with low error),

That meets your design criteria (such as no more than 20% overshoot in the step response)
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Example:  Assume the system to be controlled is

G(s) = 


1000

(s+5)(s+10)(s+20)




Design a digital compensator, K(z) = k, with a sampling rate of T = 10ms for

No overshoot,

20% overshoot, and

The maximum gain for stability.

Solution:  First, convert G(s) to G(z).  With T = 0.01 second

G(z) ≈ 


0.0008413z

(z−0.9512)(z−0.9048)(z−0.8187)




Now, draw the root locus of G(z) and add in the damping lines

In Matlab:

T = 0.01;
Gz = zpk(0, [0.9512, 0.9048, 0.8187], 0.0008413);
k = logspace(-2,2,1000)';
R = rlocus(G,k);

% draw the damping lines on this graph

hold on
s = [0:0.01:100] * (-1+j*2);
z = exp(s*T);
plot(real(z),imag(z),'r')
 
s = [0:0.01:100] * (j*1);
z = exp(s*T);
plot(real(z),imag(z),'r')

Root-Locus of G(z) with 0.4559 and 0.0 damping lines
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Note that

The damping lines depart from z = 1 (which is DC in the z-plane)

The damping lines are slightly bent.  This is the log-spiral resulting from mapping s to z as .esT

Once draw, find the spot on the root locus

a)  No overshoot.   This is the breakaway point on the root-locus

z = 0.9305

At this point




0.0008413z

(z−0.9512)(z−0.9048)(z−0.8187)




z=0.9305

= 13.1620∠1800

The compensator gain is then

K =
1

13.1620
= 0.0760

This results in a 2% settling time of

  samples   (0.543 seconds)t2% =
ln(0.02)

ln(0.9305)
= 54.3

The error constant, Kp, is the DC gain of G*K.   Since G(s) and G(z) at DC is one

Kp = 0.0760

Step Response with K(z) chosen to place the poles at the breakaway point (no overshoot).
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b)  20% overshoot.  This point on the root locus is

z = 0.9513 + j0.0873

At this point




0.0008413z

(z−0.9512)(z−0.9048)(z−0.8187)




z=0.9513+j0.0873

= 0.5867∠1800

K(z) is then

K =
1

0.5867
= 1.7044

The resulting 2% settling time is

 samplest2% =
ln(0.02)

ln( 0.9513+j0.0873 )
= 85.52

Since the DC gain of G(s) and G(z) is one, the error constant Kp is K*1 or

Kp = 1.7044

Checking in VisSim (using the actual analog system and a digital compensator with a sampling rate of 10ms)

Step Response with K(z) chosen for 20% overshoot

Note that the overshoot is almost 20%, as desired.
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c) Max Gain for Stability (the jw crossing).  The point that intersects with the unit circle is

z = 0.9850 + j0.1723  = 1∠9.92150

At this point




0.0008413z

(z−0.9512)(z−0.9048)(z−0.8187)




z=0.9850+j0.1723

= 0.1053∠1800

meaning

K(z) =
1

0.1053
= 9.5008

With this K(z), the 2% settling time is infinite.

The frequency of oscillation is

∠z = 9.92150

period =  samples = 0.3628 seconds
3600

9.92150
= 36.28

 2.75 Hzf =
1

period
=

Checking in VisSim

Step Response with K(z) chosen to place the poles on the unit circle.  The period of oscillations = 0.3628 seconds

Moral:  Root-locus works in the z-plane just like it does in the s-plane.  The only difference is how you interpret

the results.
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Alternate Method:

Note that when using root-locus techniques, you really only care about one point:  the one where the angles add

up to 180 degrees.  At this point

G ⋅ K = 1∠1800

When you have a digital compensator, you really have three terms:

G(s) * K(z) * sample and hold

E
exp(sT/2) K(z) G(s)

plantCompensatorSample & Hold

The open-loop system has three terms:

The sample and hold adds a delay of 1/2 sample.  For example, if you sample a 3Hz sine wave with T = 0.01

second, you get a 3Hz sine wave, delayed by 5ms

3Hz sine wave (blue) sampled at 10ms (red) results in a 3Hz sine wave delayed by 1/2 of a sample (5ms)

Likewise, you can solve the previous root-locus problems using numerical methods to find the point on the

damping line where

angle(G(s) ⋅ K(z) ⋅ e−sT/2) = 1800
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You're kind-of mixing planes with this approach. Since you only care about one point, however, you don't care.

You just

Guess the point, s

Compute the corresponding point in the z-plane as z = esT

Evaluate the above function, and

Repeat until the angles add up to 180 degrees

Example:  Find the gain, k, that results in 20% overshoot in the step response.

In Matlab, start with a guess of s = -5 + j10.   Evaluate G(s)*delay

-->s = 5*( -1 + j*2);
-->1000 / ( (s+5)*(s+10)*(s+20))  *  exp(-s*T/2)
  - 0.5009862 + 0.0882455i  

The angle isn't zero (the complex part is non-zero), so try a different s, such as 10% bigger

 
-->s = s*1.1;
-->1000 / ( (s+5)*(s+10)*(s+20))  *  exp(-s*T/2)
  - 0.4037178 + 0.1524678i  

That made the complex part worse.  If 10% bigger is bad, try 10% smaller 

-->s = s*0.9;
-->1000 / ( (s+5)*(s+10)*(s+20))  *  exp(-s*T/2)
  - 0.5110062 + 0.0796359i  
 
-->s = s*0.9;
-->1000 / ( (s+5)*(s+10)*(s+20))  *  exp(-s*T/2)
  - 0.6083330 - 0.0321254i  

Too far (there was a sign flip on the complex portion).  Try 1% larger now.

 
-->s = s*1.01;
-->1000 / ( (s+5)*(s+10)*(s+20))  *  exp(-s*T/2)
  - 0.5999484 - 0.0199126i  
 

Too far (sign flip on the complex portion).  Try 0.1% smaller 

-->s = s*0.999;
-->1000 / ( (s+5)*(s+10)*(s+20))  *  exp(-s*T/2)
  - 0.5843619 + 0.0012012i  
 

Close enough.  This results in  

-->k = 1/abs(ans)

    1.7086736  

which is about the same result we got with root locus techniques.  It's a little more accurate, however, since you

don't have to approximate G(s) with G(z) with this method.  Either way works - the lecture notes and homework

solutions use this latter method, however.  (My calculator has a solver function).
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