PID in the z-Domain

Objectives:

- Design a PID compensator in the z-domain.

Discussion:

The purpose of a PID compensator is to remove the steady-state error for a step input (I) and speed up the system (PD). For discrete-time systems, the D stands for 'delay' not 'derivative' however.

$$
K(z)=P+I\left(\frac{z}{z-1}\right)+D\left(\frac{1}{z}\right)
$$

Example: Design a P, PI, and PID compensator for G(s) that results in 20% overshoot in the step response.
Assume a sampling rate of 50 ms .

$$
G(s)=\left(\frac{1000}{(s+2)(s+4)(s+6)(s+8)}\right)
$$

First, find $G(z)$. Assume a sampling rate of 0.05 second.
Convert the poles in the s-plane to the z-plane:

$$
\begin{array}{ll}
\mathrm{s}=-2 & \mathrm{z}=0.9048 \\
\mathrm{~s}=-4 & \mathrm{z}=0.8187 \\
\mathrm{~s}=-6 & \mathrm{z}=0.7408 \\
\mathrm{~s}=-8 & \mathrm{z}=0.6703
\end{array}
$$

so

$$
G(z) \approx\left(\frac{k z^{2}}{(z-0.9048)(z-0.8187)(z-0.7408)(z-0.6703)}\right)
$$

Matching the DC gain:

$$
G(s=0)=2.6042
$$

To make

$$
\mathrm{G}(\mathrm{z}=1)=2.6042
$$

$\mathrm{k}=0.003841$

$$
G(z) \approx\left(\frac{0.003841 z^{2}}{(z-0.9048)(z-0.8187)(z-0.7408)(z-0.6703)}\right)
$$

To get the delay right, you can play with the numerator. A delay of two $\left(\mathrm{z}^{2}\right)$ in the numerator worked best.

P Compensation: $K(z)=P=k$.

Find the feedback gain, k, that results in 20% overshoot in the step response.
There are two ways to do this:

- You can analyze the system in the z-domain
- You can analyze the system in a hybrid domain (s and z) and avoid having to convert $\mathrm{G}(\mathrm{s})$ to $\mathrm{G}(\mathrm{z})$.

Method \#1: Analyze the system in the z-plane.

$$
G(z) \approx\left(\frac{0.003841 z^{2}}{(z-0.9048)(z-0.8187)(z-0.7408)(z-0.6703)}\right)
$$

Sketch the root locus and find the point which intersects the damping ratio of 0.4559 :

```
G = zpk([0,0],[0.9048,0.8187,0.7408,0.6703],0.003841);
k = logspace(-2,2,1000)';
R = rlocus(G,k);
% add in the damping line
s = [0:0.01:10]' * (-1+j*2);
T = 0.05;
z = exp(s*T);
plot(real(z),imag(z),'r');
```


Root Locus of $\mathrm{G}(\mathrm{z})$ with $\mathrm{K}(\mathrm{z})=\mathrm{k}$
This gives

$$
\mathrm{z}=0.9224+\mathrm{j} 0.1289
$$

and

$$
\begin{aligned}
& G(z)=-2.4547 k=-1 \\
& k=0.4047
\end{aligned}
$$

Method \#2: Model the sample and hold with a $1 / 2$ sample delay:

$$
G(s)=\left(\frac{1000}{(s+2)(s+4)(s+6)(s+8)}\right)\left(e^{-0.025 s}\right)
$$

Search along the damping ratio of 0.4559

$$
s=\alpha \angle 117.1229^{\circ}
$$

Iterate by adjusting α until the angle of $\mathrm{G}(\mathrm{s})$ add up to 180 degrees. This is (solved numerically):

$$
\mathrm{s}=-1.3887+\mathrm{j} 2.7111
$$

This corresponds to the point in the z-plane (from $z=e^{s T}$)

$$
z=0.9244+j 0.1261
$$

At any point on the root locus, $\mathrm{GK}=-1$

$$
G(s)=-2.5892
$$

so

$$
\mathrm{k}=0.3862
$$

Note that the resulting pole location in the z -plane and the resulting gain, k , is almost what you got with the first method. The second method is a little more accurate since it doesn't depend upon any s to z conversions.

5b) Verify your design in VisSim.

Step Resonse with Proportional Control

Note that there is steady-state error. This is expected since this is a type-0 system.

PI Compensation: $K(z)=k\left(\frac{z-a}{z-1}\right)$
To make the steady-state error zero, add a pole at $\mathrm{s}=0(\mathrm{z}=1)$. Since you're adding a pole, you can also add a zero for free. This results in a PI compensator. Designing it for

- $\mathrm{T}=0.05$
- 20% overshoot
is as follows:

Method \#1: Design in the z-plane.

$$
G(z) \approx\left(\frac{0.003841 z^{2}}{(z-0.9048)(z-0.8187)(z-0.7408)(z-0.6703)}\right)
$$

Make this a type 1 system and cancel the slowest stable pole

$$
K(z)=k\left(\frac{z-0.9048}{z-1}\right)
$$

Sketch the resulting root locus:

```
G = zpk([0,0],[1,0.8187,0.7408,0.6703],0.003841);
k = logspace(-2,2,1000)';
R = rlocus(G,k,0.4559);
// damping lines from before
plot(real(z),imag(z),'r');
```


Root Locus with a PI Compensator
Find the point which intersects the damping ratio of 0.4559 :

$$
\mathrm{z}=0.9522+\mathrm{j} 0.0840
$$

This gives

$$
\begin{aligned}
& \mathrm{G}(\mathrm{z})=-3.4289 \\
& \mathrm{k}=0.2908 \\
& K(z)=0.2908\left(\frac{z-0.9048}{z-1}\right)
\end{aligned}
$$

Method \#2: Model the sample and hold as a $1 / 2$ sample delay:

$$
G(s)=\left(\frac{1000}{(s+2)(s+4)(s+6)(s+8)}\right)\left(e^{-0.025 s}\right)
$$

Add $\mathrm{K}(\mathrm{z})$ to cancel the pole at $\mathrm{s}=-2$ and add a pole at $\mathrm{s}=0$:

$$
K(z)=k\left(\frac{z-0.9048}{z-1}\right)
$$

Search in the s (and corresponding z) plane along the damping ratio of 0.4559 until the angles add up to 180 degrees:

$$
\begin{aligned}
& s=0.8734+j 1.7050 \\
& z=0.9538+j 0.0815
\end{aligned}
$$

At any point on the root locus, $\mathrm{GK}=-1$

$$
\mathrm{GK}=-3.6004
$$

$$
\mathrm{k}=0.2777
$$

so

$$
K(z)=0.2777\left(\frac{z-0.9048}{z-1}\right)
$$

Verify your design in VisSim.

Note again that the two methods give almost the same result. The latter method is a little more accurate, however, since it avoids the $\mathrm{G}(\mathrm{s})$ to $\mathrm{G}(\mathrm{z})$ conversion and it accounts for the $1 / 2$ sample delay resulting from the sample and hold.

The difference between an I and PI compensator is

- You add a zero with a PI compensator, which allows you to cancel a pole and speed up the system, and
- The initial 'guess' for U isn't zero with a PI compensator. This speeds up the system as well.

PID Compensation: $K(z)=k\left(\frac{(z-a)(z-b)}{z(z-1)}\right)$
Design a PID compensator that results in 20% overshoot in the step response.

Method \#1: Convert to the z-plane

$$
G(z) \approx\left(\frac{0.003841 z^{2}}{(z-0.9048)(z-0.8187)(z-0.7408)(z-0.6703)}\right)
$$

Cancel the two slowest poles. Replace them with a pole at $\mathrm{z}=+1$ (to make it a type -1 system) and z pole at $\mathrm{z}=0$ (to make it causal).

$$
K(z)=k\left(\frac{(z-0.9048)(s-0.8187)}{z(z-1)}\right)
$$

Sketch the resulting root locus:

```
G = zpk([0,0],[1,0,0.7408,0.6703],0.003841);
k = logspace(-2,2,1000)';
R = zlocus(G,k,0.4559);
// add damping line from before
plot(real(z),imag(z);
```


Root Locus with a PID compensator
Find the point on the root locus which intersects the damping ratio of 0.4559 curve:

$$
\mathrm{z}=0.9164+\mathrm{j} 0.1373
$$

At this point

$$
\mathrm{GK}=-0.3524 \mathrm{k}=-1
$$

$$
\mathrm{k}=2.8381
$$

and

$$
K(z)=2.8381\left(\frac{(z-0.9048)(s-0.8187)}{z(z-1)}\right)
$$

Method \#2: Model the sample and hold as a $1 / 2$ sample delay

$$
G(s)=\left(\frac{1000}{(s+2)(s+4)(s+6)(s+8)}\right)\left(e^{-0.025 s}\right)
$$

Add a compensator, $\mathrm{K}(\mathrm{z})$, to cancel the slowest stable poles (or their corresponding spot in the z -plane)

$$
K(z)=k\left(\frac{(z-0.9048)(s-0.8187)}{z(z-1)}\right)
$$

Search along the damping ratio of 0.4559 until the angle of GK is 180 degrees

$$
\begin{aligned}
& s=-1.4422+j 2.8155 \\
& z=0.9212+j 0.1305
\end{aligned}
$$

At this point, $\mathrm{GK}=-1$

$$
\begin{aligned}
& \mathrm{GK}=-0.3824 \mathrm{k}=-1 \\
& \mathrm{k}=2.6153
\end{aligned}
$$

so

$$
K(z)=2.6153\left(\frac{(z-0.9048)(s-0.8187)}{z(z-1)}\right)
$$

7b) Verify your design in VisSim or MATLAB.

Digital PID Compensator for $\mathrm{G}(\mathrm{s})$

Note with a PID compensator

- You now have two zeros to use to cancel two poles
- This allows you to speed up the system significantly, but
- The initial input, U , is much larger. It starts out at 2.6153 (off the graph).

Part of the reason for the large spike at $\mathrm{t}=0$ is the sampling rate is too small. The 2% settling time is about 3 seconds. With $T=0.05$, this gives the controllers 60 samples to figure out the input - which is more than you really need. If you reduce this to 15 samples, meaning

$$
\mathrm{T}=0.2
$$

you get

$$
\begin{aligned}
& G(s)=\left(\frac{1000}{(s+2)(s+4)(s+6)(s+8)}\right) \\
& K(z)=k\left(\frac{(z-0.6703)(z-0.4493)}{z(z-1)}\right)
\end{aligned}
$$

Searching along the line $s=-a+j a$ until the angles of

$$
\operatorname{angle}\left(G(s) \cdot K(z) \cdot e^{-s T / 2}\right)=180^{0}
$$

results in

$$
\begin{aligned}
& \mathrm{s}=-1.0747+\mathrm{j} 2.1494 \\
& \mathrm{z}=0.7332+\mathrm{j} 0.3362 \\
& \mathrm{k}=0.6893
\end{aligned}
$$

and

$$
K(z)=0.6893\left(\frac{(z-0.6703)(z-0.4493)}{z(z-1)}\right)
$$

Step Resonse of a PID Compensator with $\mathrm{T}=0.2$ seconds

This is about the same response as we had before, only with

- A much more reasonable input at $\mathrm{t}=0$ (0.689 vs. 2.615)
- A much slower sampling rate (200 ms vs 50 ms)

Faster sampling rates are not always good. They can actually cause problems.

