Meeting Design Specs in the z-plane

Like the s-plane, you can add poles and zeros to a compensator in the z-plane to meet design specs. In general

- You add zeros to cancel slow poles
- For every zero you add, you need to add a pole
- One of these poles goes to $\mathrm{s}=0(\mathrm{z}=1)$ if you need to make the system type-1, and
- The remaining poles go somewhere out of the way (or are adjusted to meet the design specs).

There are a few things to avoid when designing a digital compensator, however.

- Avoid placing poles outside the unit circle. This results in the open-loop system being unstable, which makes it difficult (sometimes dangerous) to test and debug.
- Avoid placing poles on the negative real axis (between -1 and 0). This results in the input switching between positive and negative each sample, which tends to wear out actuators.

Regions to avoid for placing the poles of $\mathrm{K}(\mathrm{z})$ when designing a digital compensator

Example: Design a compensator, $\mathrm{K}(\mathrm{z})$, for the following system

$$
G(s)=\left(\frac{50}{(s+1)(s+3)(s+10)}\right)
$$

that results in

- No error for a step input,
- 20% overshoot for a step input, and
- A 2% settling time of 4 seconds.

Method \#1: z-Plane Analysis

Since the sampling rate was not specified, pick T. Since the settling time is 4 seconds, a reasonable sampling rate is 200 ms

$$
\mathrm{T}=0.2
$$

This gives the controller twenty iterations to force the output to track the input. (perhaps a bit much)

Since K is in the z -plane, convert everything to the z -plane. From previous methods

$$
G(z) \approx\left(\frac{0.1179 z}{(z-0.8187)(z-0.5488)(z-0.1353)}\right)
$$

The design requirements translate to

- Make the system type-1
- Place the closed-loop dominant pole at $\mathrm{s}=-1+\mathrm{j} 2$ (s-plane)
- Place the closed-loop dominant pole at $\mathrm{z}=0.7541+\mathrm{j} 0.3188$ (z -plane found from $z=e^{s T}$)

Let

$$
\begin{aligned}
& K(z)=k\left(\frac{(z-0.8187)(z-0.5488)}{(z-1)(z-a)}\right) \\
& G K=\left(\frac{0.1179 k z}{(z-1)(z-0.1353)(z-a)}\right)
\end{aligned}
$$

Pick 'a' so that $0.7541+\mathrm{j} 0.3188$ is on the root locus. Taking the part you know:

$$
\left(\frac{0.1179 z}{(z-1)(z-0.1353)}\right)_{z=0.7541+j 0.3188}=0.3444 \angle-131.98^{0}
$$

meaning ($\mathrm{z}-\mathrm{a}$) must contribute -48.01 degrees to make the angles add up to 180 degrees. ' a ' is then

$$
\begin{aligned}
& a=0.7541-\left(\frac{0.3188}{\tan \left(48.01^{\circ}\right)}\right) \\
& a=0.4672
\end{aligned}
$$

To find ' k ', set $\mathrm{GK}=-1$ at $\mathrm{z}=0.7541+\mathrm{j} 0.3188$

$$
\begin{aligned}
& \left(\frac{0.1179 z}{(z-1)(z-0.4672)(z-0.1353)}\right)_{z=0.7541+j 0.3188}=0.8029 \angle 180^{0} \\
& k=\frac{1}{0.8029}=1.2454
\end{aligned}
$$

and

$$
K(z)=1.2454\left(\frac{(z-0.8187)(z-0.5488)}{(z-1)(z-0.4672)}\right)
$$

Checking in VisSim:

Note that the overshoot is a little off. This is due to the model for $\mathrm{G}(\mathrm{z})$ being slightly off.

Method \#2: Mixed Analysis

Since we really don't need to sketch the root locus, you don't really need to convert $\mathrm{G}(\mathrm{s})$ to $\mathrm{G}(\mathrm{z})$. All you really need is to be able to analyze $\mathrm{G}(\mathrm{s})$ and $\mathrm{K}(\mathrm{z})$ at the same point. The conversion $z=e^{s T}$ allows you to do this.

Step 1: Decide where you want to place the closed-loop poles. From before

- $\mathrm{s}=-1+\mathrm{j} 2$
- $\mathrm{z}=0.7541+\mathrm{j} 0.3188$

Step 2: Model $\mathrm{G}(\mathrm{s})$ and the zero-order hold (modeled as a $1 / 2$ sample delay)

$$
G(s) \cdot \mathrm{ZOH}=\left(\frac{50}{(s+1)(s+3)(s+10)}\right) \cdot e^{-s T / 2}
$$

Step 3: Pick the form of $\mathrm{K}(\mathrm{z})$

$$
\begin{aligned}
& K(z)=k\left(\frac{(z-0.8187)(z-0.5488)}{(z-1)(z-a)}\right) \\
& G \cdot K \cdot Z O H=\left(\frac{50}{(s+1)(s+3)(s+10)}\right) \cdot e^{-s T / 2} \cdot k\left(\frac{(z-0.8187)(z-0.5488)}{(z-1)(z-a)}\right)
\end{aligned}
$$

To find 'a', evaluate at s (z). Pick 'a' to make the angles add up to 180 degrees

$$
\begin{aligned}
& \left(\left(\frac{50}{(s+1)(s+3)(s+10)}\right) \cdot e^{-s T / 2} \cdot\left(\frac{(z-0.8187)(z-0.5488)}{(z-1)}\right)\right)_{s=-1+j 2}= \\
& =\left(\left(0.9587 \angle-147^{0}\right) \cdot\left(0.9048 \angle-11.46^{0}\right) \cdot\left(0.3063 \angle 31.03^{0}\right)\right) \\
& =0.2657 \angle-127.96^{0}
\end{aligned}
$$

To make the angle 180 degrees, ($\mathrm{z}-\mathrm{a}$) contributes 52.04 degrees

$$
a=0.7541-\left(\frac{0.3188}{\tan \left(52.04^{0}\right)}\right)=0.5054
$$

and

$$
K(z)=k\left(\frac{(z-0.8187)(z-0.5488)}{(z-1)(z-0.5054)}\right)
$$

To find ' k '

$$
\left(\left(\frac{50}{(s+1)(s+3)(s+10)}\right) \cdot e^{-s T / 2} \cdot\left(\frac{(z-0.8187)(z-0.5488)}{(z-1)(z-0.5054)}\right)\right)_{s=-1+j 2}=0.8028 \angle 180^{0}
$$

so

$$
k=\frac{1}{0.8028}
$$

and

$$
K(z)=1.2456\left(\frac{(z-0.8187)(z-0.5488)}{(z-1)(z-0.5054)}\right)
$$

Checking in VisSim: The results is much closer to 20% overshoot due to using $\mathrm{G}(\mathrm{s})$ rather than approximating it with $G(z)$

