LaPlace Transforms Review

ECE 461/661 Controls Systems
Jake Glower - Lecture \#10
Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

Transfer Functions and Differential Equations:

LaPlace transforms assume all functions are in the form of

$$
y(t)=\left\{\begin{array}{cc}
a \cdot e^{s t} & t>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

This results in the derivative of y being:

$$
\frac{d y}{d t}=s \cdot y(t)
$$

This lets you convert differential equations into transfer functions and back.

Example 1: Find the transfer function that relates X and Y :

$$
\frac{d^{3} y}{d t^{3}}+6 \frac{d^{2} y}{d t^{2}}+11 \frac{d y}{d t}+6 y=8 \frac{d x}{d t}+10 x
$$

Solution: Substitute 's' for $\frac{d}{d t}$

$$
s^{3} Y+6 s^{2} Y+11 s Y+6 Y=8 s X+10 X
$$

Solve for Y

$$
\begin{aligned}
& \left(s^{3}+6 s^{2}+11 s+6\right) Y=(8 s+10) X \\
& Y=\left(\frac{8 s+10}{s^{3}+6 s^{2}+11 s+6}\right) X
\end{aligned}
$$

The transfer function from X to Y is

$$
G(s)=\left(\frac{8 s+10}{s^{3}+6 s^{2}+11 s+6}\right)
$$

Note: The transfer function is often called ' $\mathrm{G}(\mathrm{s})^{\prime}$ ' since it is the gain from X to Y .

Example 2: Determine the differential equation that relates X and Y

$$
Y=\left(\frac{8 s+10}{s^{3}+6 s^{2}+11 s+6}\right) X
$$

Cross multiply:

$$
\left(s^{3}+6 s^{2}+11 s+6\right) Y=(8 s+10) X
$$

Note that 'sY' means 'the derivative of Y^{\prime}

$$
\frac{d^{3} y}{d t^{3}}+6 \frac{d^{2} y}{d t^{2}}+11 \frac{d y}{d t}+6 y=8 \frac{d x}{d t}+10 x
$$

Note: Fractional powers are not allowed

- $s^{2} Y$ means 'the second derivative of Y '.
- $s^{2.3} Y$ means 'the 2.3th derivative of Y^{\prime}.

I have no idea what a 0.3 derivative is.

Solving Transfer Functions with Sinusoidal Inputs

Example 3: Find $y(t)$ given

$$
Y=\left(\frac{8 s+10}{s^{3}+6 s^{2}+11 s+6}\right) X \quad x(t)=3 \cos (4 t)
$$

Solution: This is a phasor problem (Circuits I)

$$
\begin{array}{ll}
X=3+j 0 & \text { real }=\text { cosine }, \text { imag }=- \text { sine } \\
s=j 4 & \\
Y=\left(\frac{8 s+10}{s^{3}+6 s^{2}+11 s+6}\right)_{s=j 4}(3+j 0)=-0.5435-j 0.9459
\end{array}
$$

which means...

$$
y(t)=-0.5435 \cos (4 t)+0.9459 \sin (4 t)
$$

Example 4: Find $y(t)$ if

$$
Y=\left(\frac{8 s+10}{s^{3}+6 s^{2}+11 s+6}\right) X \quad x(t)=5 \sin (20 t)
$$

Solution: Similar to before

$$
\begin{aligned}
& X=0-j 5 \\
& s=j 20 \\
& Y=\left(\frac{8 s+10}{s^{3}+6 s^{2}+11 s+6}\right)_{s=j 20}(0-j 5)=-0.0230+j 0.0957
\end{aligned}
$$

meaning

$$
y(t)=-0.230 \cos (20 t)-0.0957 \sin (20 t)
$$

Note: Gain varies with frequency (it's a filter)

Example 5: Find $y(t)$ if

$$
x(t)=3 \cos (4 t)+5 \sin (20 t)
$$

Solution: Use superposition. Treat this as two separate problems

- $x(t)=3 \cos (4 t)$
- $x(t)=5 \sin (20 t)$

The total input is the sum of the two $x(t)$'s.
The total output is the sum of the two $y(t)$'s

$$
\begin{aligned}
y(t)= & -0.5435 \cos (4 t)+0.9459 \sin (4 t) \\
& -0.230 \cos (20 t)-0.0957 \sin (20 t)
\end{aligned}
$$

Solving Transfer Functions with Step Inputs

There are several ways to do this. My preference is to use a table

Common LaPlace Transforms		
Name	Time: $\mathrm{y}(\mathrm{t})$	LaPlace: $\mathrm{Y}(\mathrm{s})$
delta (impulse)	$\delta(t)$	1
unit step	$u(t)$	$\frac{1}{s}$
decaying exponential	$a \cdot e^{-b t} u(t)$	$\frac{a}{s+b}$
damped sinusoid	$2 a \cdot e^{-b t} \cos (c t-\theta) u(t)$	$\left(\frac{a \angle \theta}{s+b+j c}\right)+\left(\frac{a \angle-\theta}{s+b-j c}\right)$

Example 6: Find the impulse response of $\mathrm{G}(\mathrm{s})$

$$
G(s)=\left(\frac{5}{s+3}\right)
$$

Translating:

$$
Y=\left(\frac{5}{s+3}\right) X
$$

$$
x(t)=\delta(t)
$$

Meaning

$$
Y=\left(\frac{5}{s+3}\right)(1)
$$

Using the table:

$$
y(t)=5 e^{-3 t} u(t)
$$

Example 7: Find the step response of

$$
G(s)=\left(\frac{5}{s+3}\right)
$$

Translating:

$$
\begin{array}{ll}
Y=\left(\frac{5}{s+3}\right) X & x(t)=u(t) \\
Y=\left(\frac{5}{s+3}\right)\left(\frac{1}{s}\right)=\left(\frac{5}{s(s+3)}\right) &
\end{array}
$$

Not in the table, so use partial fraction expansion

$$
\left(\frac{5}{s(s+3)}\right)=\left(\frac{A}{s}\right)+\left(\frac{B}{s+3}\right)
$$

Partial Fractions

$$
Y=\left(\frac{5}{s(s+3)}\right)=\left(\frac{A}{s}\right)+\left(\frac{B}{s+3}\right)
$$

Using the cover-up method

$$
\begin{aligned}
& A=\left(\frac{5}{s+3}\right)_{s=0}=\frac{5}{3} \\
& B=\left(\frac{5}{s}\right)_{s=-3}=-\frac{5}{3} \\
& Y=\left(\frac{5 / 3}{s}\right)-\left(\frac{5 / 3}{s+3}\right)
\end{aligned}
$$

meaning

$$
y(t)=\left(\frac{5}{3}-\frac{5}{3} e^{-3 t}\right) u(t)
$$

Repeated Roots

Option 1: Use a table that includes repeated roots
Option 2: Change the problem

- Change it one that is easier to solve (no repeated roots)
- But keep the flavor of the original problem

$$
G(s)=\left(\frac{1}{(s+1)(s+1)}\right) \approx\left(\frac{1}{(s+0.99)(s+1.01)}\right)
$$

You'll have a hard time telling the difference

Solving with Complex Roots:

- If you don't mind complex numbers, complex roots are no harder than real roots
- Use the table entery:

$$
\left(\frac{a \angle \theta}{s+b+j c}\right)+\left(\frac{a \angle-\theta}{s+b-j c}\right) \Rightarrow 2 a \cdot e^{-b t} \cos (c t-\theta) u(t)
$$

Example: Find the step resposne of

$$
\left(\frac{15}{s^{2}+2 s+10}\right)=\left(\frac{15}{(s+1+j 3)(s+1-j 3)}\right)
$$

Solution:

$$
Y=\left(\frac{15}{(s+1+j 3)(s+1-j 3)}\right)\left(\frac{1}{s}\right)=\left(\frac{A}{s}\right)+\left(\frac{B}{s+1+j 3}\right)+\left(\frac{C}{s+1-j 3}\right)
$$

Use partial fractions

$$
Y=\left(\frac{15}{(s+1+j 3)(s+1-j 3)}\right)\left(\frac{1}{s}\right)=\left(\frac{A}{s}\right)+\left(\frac{B}{s+1+j 3}\right)+\left(\frac{C}{s+1-j 3}\right)
$$

Using the cover-up method

$$
\begin{aligned}
& A=\left(\frac{15}{(s+1+j 3)(s+1-j 3)}\right)_{s=0}=1.5 \\
& B=\left(\frac{15}{s(s+1+j 3)}\right)_{s=-1-j 3}=0.7906 \angle-161.5^{0} \\
& C=\left(\frac{15}{s(s+1-j 3)}\right)_{s=-1+j 3}=0.7906 \angle+161.5^{0}
\end{aligned}
$$

meaning

$$
\begin{aligned}
& Y=\left(\frac{1.5}{s}\right)+\left(\frac{0.7906 \angle-161.5^{0}}{s+1+j 3}\right)+\left(\frac{0.7906 \angle 161.5^{0}}{s+1-j 3}\right) \\
& y(t)=\left(1.5+1.5812 e^{-t} \cos \left(3 t+161.5^{0}\right)\right) u(t)
\end{aligned}
$$

Controls Systems vs. Signals \& Systems

Controls Systems is easier:

- This class uses single-sided, one-dimensional LaPlace transforms
- Time is unidirectional (single-sided)
- Time has one dimension

In Signals \& Systems

- You can have non-causal filters (left \& right for an image)
- You can have multiple dimension (X, Y, Z)
- You can have a complex number without its complex conjugate
- Single Side-Band radio transmission

Matlab to the Rescue!

- Calculating step responses is really tedious.
- Matlab makes life much easier

Input a system:

Matlab Command

$$
\begin{aligned}
& G=\operatorname{tf}([2,3,4],[5,6,7,8]) \\
& G=\operatorname{zpk}([-1,-2],[-3,-4,-5], 10) \\
& G=\operatorname{ss}(A, B, C, D)
\end{aligned}
$$

Meaning

$$
\begin{aligned}
& G(s)=\left(\frac{2 s^{2}+3 s+4}{5 s^{3}+6 s^{2}+7 s+8}\right) \\
& G(s)=\left(\frac{10(s+1)(s+2)}{(s+3)(s+4)(s+5)}\right) \\
& s X=A X+B U \\
& Y=C X+D U
\end{aligned}
$$

Step and impulse response

```
t = [0:0.01:10]';
y = impulse(G,t);
plot(t,y)
t = [0:0.01:10]';
y = step(G,t);
plot(t,y)
```

```
impulse response
```

impulse response
step response

```

\section*{Combining Systems}
\[
\begin{aligned}
& A=\operatorname{zpk}([],[-1,-2], 10) \\
& B=\operatorname{tf}(10,[1,6,4]) \\
& G=\text { minreal }(A * B) \\
& G=\text { minreal }(A+B)
\end{aligned}
\]
\[
A=\left(\frac{10}{(s+1)(s+2)}\right)
\]
\[
B=\left(\frac{10}{s^{2}+6 s+4}\right)
\]
\[
G=A B=\left(\frac{10}{(s+1)(s+2)}\right)\left(\frac{10}{s^{2}+6 s+4}\right)
\]
\[
G=A+B=\left(\frac{10}{(s+1)(s+2)}\right)+\left(\frac{10}{s^{2}+6 s+4}\right)
\]

\section*{Partial Fractions in Matlab}
\[
\begin{aligned}
Y & =\left(\frac{20(s+3)}{s(s+5)(s+10)}\right)=\left(\frac{A}{s}\right)+\left(\frac{B}{s+5}\right)+\left(\frac{C}{s+10}\right) \\
\gg G & =\operatorname{zpk}([-3],[0,-5,-10], 20) \\
\gg & =0+1 \mathrm{e}-9 ; \\
>\mathrm{A} & =\operatorname{evalfr}(\mathrm{G}, \mathrm{~s}) *(\mathrm{~s}+0) \\
\mathrm{A} & =1.2000 \\
\gg \mathrm{~S} & =-5+1 \mathrm{e}-9 ; \\
\gg B & =\operatorname{evalfr}(\mathrm{G}, \mathrm{~s}) *(\mathrm{~s}+5) \\
\mathrm{B} & =1.6000
\end{aligned}
\]
>> s = -10 + 1e-9;
>> C = evalfr (G,s) * (s+10)
\[
c=-2.8000
\]```

