
LaPlace Transforms Review
ECE 461/661 Controls Systems

Jake Glower - Lecture #10

Please visit Bison Academy for corresponding
 lecture notes, homework sets, and solutions

Transfer Functions and Differential Equations:



LaPlace transforms assume all functions are in the form of

y(t) =





a ⋅ est t > 0

0 otherwise

This results in the derivative of y being:
dy

dt
= s ⋅ y(t)

This lets you convert differential equations into transfer functions and back.



Example 1: Find the transfer function that relates X and Y:

d3y

dt3
+ 6

d2y

dt2
+ 11

dy

dt
+ 6y = 8dx

dt
+ 10x

Solution:  Substitute 's' for d

dt

s3Y + 6s2Y + 11sY + 6Y = 8sX + 10X

Solve for Y

(s3 + 6s2 + 11s + 6)Y = (8s + 10)X

Y = 


8s+10

s3+6s2+11s+6


X

The transfer function from X to Y is

G(s) = 


8s+10

s3+6s2+11s+6




Note:  The transfer function is often called 'G(s)' since it is the gain from X to Y.



Example 2:  Determine the differential equation that relates X and Y

Y = 


8s+10

s3+6s2+11s+6


X

Cross multiply:

(s3 + 6s2 + 11s + 6)Y = (8s + 10)X

Note that 'sY' means 'the derivative of Y'

d3y

dt3
+ 6

d2y

dt2
+ 11

dy

dt
+ 6y = 8dx

dt
+ 10x

Note:  Fractional powers are not allowed 

 means 'the second derivative of Y'.  s2Y

 means 'the 2.3th derivative of Y'. s2.3Y

I have no idea what a 0.3 derivative is.



Solving Transfer Functions with Sinusoidal Inputs

Example 3:  Find y(t) given

Y = 


8s+10

s3+6s2+11s+6


X x(t) = 3 cos(4t)

Solution:   This is a phasor problem (Circuits I)

real = cosine, imag = -sineX = 3 + j0

s = j4

Y = 


8s+10

s3+6s2+11s+6




s=j4
(3 + j0) = −0.5435 − j0.9459

which means...

y(t) = −0.5435 cos(4t) + 0.9459 sin(4t)



Example 4:  Find y(t) if

Y = 


8s+10

s3+6s2+11s+6


X x(t) = 5 sin(20t)

Solution:  Similar to before

X = 0 − j5

s = j20

Y = 


8s+10

s3+6s2+11s+6




s=j20
(0 − j5) = −0.0230 + j0.0957

meaning

y(t) = −0.230 cos(20t) − 0.0957 sin(20t)

Note:  Gain varies with frequency (it's a filter)



Example 5:  Find y(t) if

x(t) = 3 cos(4t) + 5 sin(20t)

Solution:  Use superposition.  Treat this as two separate problems

x(t) = 3 cos(4t)

x(t) = 5 sin(20t)

The total input is the sum of the two x(t)'s.  

The total output is the sum of the two y(t)'s

y(t) = −0.5435 cos(4t) + 0.9459 sin(4t)

         −0.230 cos(20t) − 0.0957 sin(20t)



Solving Transfer Functions with Step Inputs

There are several ways to do this.  My preference is to use a table

Common LaPlace Transforms

Name Time:  y(t) LaPlace: Y(s)

delta (impulse) δ(t) 1

unit step u(t) 1
s

decaying exponential a ⋅ e−btu(t) a

s+b

damped sinusoid 2a ⋅ e−btcos(ct − θ)u(t) 


a∠θ

s+b+jc

 + 

a∠−θ

s+b−jc





Example 6:  Find the impulse response of G(s)

G(s) = 


5

s+3



Translating:

Y = 


5

s+3

X x(t) = δ(t)

Meaning

Y = 


5

s+3

 (1)

Using the table:

y(t) = 5e−3tu(t)



Example 7:  Find the step response of

G(s) = 


5

s+3



Translating:

Y = 


5

s+3

X x(t) = u(t)

Y = 


5

s+3





1
s

 = 


5

s(s+3)



Not in the table, so use partial fraction expansion




5

s(s+3)

 = 


A
s

 + 

B

s+3





Partial Fractions

Y = 


5

s(s+3)

 = 


A
s

 + 

B

s+3



Using the cover-up method

A = 


5

s+3



s=0
= 5

3

B = 


5
s



s=−3
= −5

3

Y = 


5/3
s

 − 

5/3

s+3



meaning

y(t) = 


5

3
− 5

3
e−3t 

 u(t)



Repeated Roots

Option 1:  Use a table that includes repeated roots

Option 2:  Change the problem

Change it one that is easier to solve (no repeated roots)

But keep the flavor of the original problem

G(s) = 


1

(s+1)(s+1)

 ≈ 


1

(s+0.99)(s+1.01)



You'll have a hard time telling the difference



Solving with Complex Roots:
If you don't mind complex numbers, complex roots are no harder than real roots

Use the table entery:

 
a∠θ

s+b+jc

 + 

a∠−θ

s+b−jc

 ⇒ 2a ⋅ e−btcos(ct − θ)u(t)

Example:  Find the step resposne of




15

s2+2s+10


 = 


15

(s+1+j3)(s+1−j3)




Solution:  

 Y = 


15

(s+1+j3)(s+1−j3)






1
s

 = 


A
s

 + 

B

s+1+j3

 + 

C

s+1−j3



Use partial fractions



Y = 


15

(s+1+j3)(s+1−j3)






1
s

 = 


A
s

 + 

B

s+1+j3

 + 

C

s+1−j3



Using the cover-up method

A = 


15

(s+1+j3)(s+1−j3)




s=0
= 1.5

B = 


15

s(s+1+j3)




s=−1−j3
= 0.7906∠ − 161.50

C = 


15

s(s+1−j3)




s=−1+j3
= 0.7906∠ + 161.50

meaning

Y = 


1.5
s

 + 

0.7906∠−161.50

s+1+j3

 + 

0.7906∠161.50

s+1−j3



y(t) = (1.5 + 1.5812 e−t cos (3t + 161.50))u(t)



Controls Systems vs. Signals & Systems

Controls Systems is easier:

This class uses single-sided, one-dimensional LaPlace transforms
- Time is unidirectional (single-sided)

- Time has one dimension

In Signals & Systems

You can have non-causal filters (left & right for an image)

You can have multiple dimension (X, Y, Z)

You can have a complex number without its complex conjugate
- Single Side-Band radio transmission



Matlab to the Rescue!
Calculating step responses is really tedious.

Matlab makes life much easier

Input a system:

Matlab Command Meaning

G = tf([2,3,4], [5,6,7,8]) G(s) = 


2s2+3s+4

5s3+6s2+7s+8




G = zpk([-1,-2],[-3,-4,-5],10) G(s) = 


10(s+1)(s+2)

(s+3)(s+4)(s+5)



G = ss(A,B,C,D) sX = AX + BU

Y = CX + DU



Step and impulse response
t = [0:0.01:10]'; impulse response

y = impulse(G,t);

plot(t,y)

t = [0:0.01:10]'; step response

y = step(G,t);

plot(t,y)

Combining Systems

A = zpk([],[-1,-2],10) A = 


10

(s+1)(s+2)



B = tf(10,[1,6,4]) B = 


10

s2+6s+4




G = minreal(A*B) G = AB = 


10

(s+1)(s+2)





10

s2+6s+4




G = minreal(A + B) G = A + B = 


10

(s+1)(s+2)

 + 

10

s2+6s+4






Partial Fractions in Matlab

Y = 


20(s+3)

s(s+5)(s+10)

 = 


A
s

 + 

B

s+5

 + 

C

s+10



>> G = zpk([-3],[0,-5,-10],20)

>> s = 0 + 1e-9;

>> A = evalfr(G,s) * (s+0)

A = 1.2000

>> s = -5 + 1e-9;

>> B = evalfr(G,s) * (s+5)

B = 1.6000

>> s = -10 + 1e-9;

>> C = evalfr(G,s) * (s+10)

C = -2.8000


