First and Second Order Approximations

ECE 461/661 Controls Systems

 Jake Glower - Lecture \#11Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

Motivation:

- Each pole is an energy state
- If you have 10 energy states, you get a 10 th order transfer function
- Example: 10-stage RC filter with $\mathrm{RC}=1$
$Y=\left(\frac{1}{s^{10}+19 s^{9}+153 s^{8}+680 s^{7}+1820 s^{6}+3003 s^{5}+3003 s^{4}+1716 s^{3}+495 s^{2}+55 s+1}\right) X$

We need a model which is

- Simpler, and
- Still fairly accurate
- Similar step response

Dominant Pole

- One or two poles tend to dominate the response of a system

If you

- Match the dominant pole, and
- Match the DC gain

You get a

- Simpler model (1 or 2 poles),
- Which is fairly accurate (same dominant pole)

Definitions:

Dominant Pole(s):

- The pole which dominates the step response of a system
- The pole which is closest to $s=0$ (usually)

Transfer Function: G(s)

- The differential equation relating the input (X) and the output (Y)

DC Gain:

- The gain of $\mathrm{G}(\mathrm{s})$ at $\mathrm{s}=0$

2\% Settling Time:

- The time it takes the transients to decay to 2% of their initial value Overshoot:
- The maximum of a step response divided by it's steady-state value.

Damping Ratio

- Cosine of the angle of the dominant pole

Which Pole is Dominant?

Example: Find the step response of

$$
\begin{aligned}
& G(s)=\left(\frac{2000}{(s+1)(s+10)(s+100)}\right) \\
& Y(s)=\left(\frac{2000}{(s+1)(s+10)(s+100)}\right)\left(\frac{1}{s}\right) \\
& Y(s)=\left(\frac{2}{s}\right)+\left(\frac{-2.222}{s+1}\right)+\left(\frac{0.2469}{s+10}\right)+\left(\frac{0.0022}{s+100}\right) \\
& y(t)=\left(2-2.222 e^{-t}+0.2469 e^{-10 t}-0.0022 e^{-100 t}\right) u(t)
\end{aligned}
$$

Note that

- The DC gain is 2 (first term)
- The second term dominates the transient response
- Larger than the other terms
- Lasts longer than the other terms

Real Dominant Pole: $G(s)=\left(\frac{2000}{(s+1)(s+10)(s+100)}\right) \approx\left(\frac{2}{s+1}\right)$

- Keep the dominant pole $(s=-1)$
- Match the DC gain (2)

Complex Dominant Poles:

- $G(s)=\left(\frac{2,000,000}{(s+1+j 2)(s+1-j 2)(s+10)(s+50+j 200)(s+50-j 200)}\right) \approx\left(\frac{4.70588}{(s+1+j 2)(s+1-j 2)}\right)$
- Keep the poles at $-1+/-\mathrm{j} 2$
- Match the DC gain

Time Scaling

In this class, the dominant pole is usually close to 1.000

- Good numerical properties

This implies time scaling

- The x -axis could be milliseconds rather than seconds

LaPlace transforms assume all functions are of the form

$$
y=\exp (s t)
$$

If you change time from seconds to milliseconds

$$
\tau=1000 t
$$

the pole becomes 1000 x smaller

$$
y=\exp \left(\frac{s}{1000} 1000 t\right)=\exp \left(\frac{s}{1000} \tau\right)
$$

First-Order Approximations:

- Describe the step response by inspection
- Look at the dominant pole and the DC gain

Generic 1st-order system: Two degrees of freedom $G(s)=\left(\frac{a}{s+b}\right)$
DC Gain: The DC gain is the gain at $\mathrm{s}=0$:

$$
D C=\left(\frac{a}{b}\right)
$$

2\% Settling Time:
$e^{-b t}=0.02$
$t=\frac{4}{b}$

Example: 10th Order System

Sketch the step response of:

$$
Y=\left(\frac{1}{s^{10}+19 s^{9}+153 s^{8}+680 s^{7}+1820 s^{6}+3003 s^{5}+3003 s^{4}+1716 s^{3}+495 s^{2}+55 s+1}\right) X
$$

Solution: Find the DC gain

$$
\left.\begin{array}{rl}
\mathrm{DC} & =\text { evalfr }(\mathrm{G} 10,0) \\
& 1.0000 \\
D C & =\left(\frac{1}{s^{10}+19 s^{9}+153 s^{8}+680 s^{7}+1820 s^{6}+3003 s^{5}+3003 s^{4}+1716 s^{3}+495 s^{2}+55 s+1}\right)
\end{array}\right)_{s=0}=1 .
$$

Find the dominant pole \& the 2% settling time:
zpk (G10)
$(s+3.911)(s+3.652)(s+3.247)(s+2.731)(s+2.149)(s+1.555)(s+1)(s+0.5339)(s+0.1981)(s+0.02234)$
$t_{2 \%}=\frac{4}{0.02234}=179.05$ seconds

Checking in Matlab:

```
>> \(t=[0: 0.1: 300]^{\prime} ;\)
>> y10 = step (G10,t);
>> plot(t,yl0);
```


As expected, the 10 th-Order RC Filter has a DC gain of one and a 2% settling time of about 179 seconds

Going Backwards:

Give the step response, find G(s)

- The DC gain is 1.00
- The 2% settling time is 178 seconds (approximately).

This tells you that the dominant pole is

$$
\begin{aligned}
& b \approx \frac{4}{178}=0.0225 \\
& G(s) \approx\left(\frac{0.0225}{s+0.0225}\right)
\end{aligned}
$$

Second-Order Approximations:

$$
G(s)=\left(\frac{a c}{s^{2}+b s+c}\right)=\left(\frac{a \omega_{n}^{2}}{\left(s+\sigma+j \omega_{d}\right)\left(s+\sigma-j \omega_{d}\right)}\right)
$$

- The real part of the dominant pole determines the 2% settling time
- The complex part of the pole determines the frequency of oscillation

Example: $G(s)=\left(\frac{200}{(s+2+j 20)(s+2-j 20)}\right)$

Second Order Approximations (take 2)

$$
G(s)=\left(\frac{a \omega_{n}^{2}}{\left(s+\omega_{n} \angle \theta\right)\left(s+\omega_{n} \angle-\theta\right)}\right)=\left(\frac{a \omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}\right)
$$

The angle tells you the \% Overshoot

- $\zeta=\cos \theta=$ damping ratio
- $O S=\exp \left(\frac{-\pi \zeta}{\sqrt{1-\zeta^{2}}}\right)$

zeta	Overshoot
1.0	0.00%
0.9	0.15%
0.8	1.52%
0.7	4.60%
0.6	9.48%
0.5	16.30%
0.4	25.38%
0.3	37.23%
0.2	52.66%
0.1	72.92%
0.0	100%

Example: Determine the step response of the following system by inspection:

$$
G(s)=\left(\frac{2000}{(s+1+j 2)(s+1-j 2)(s+10)(s+50+j 200)(s+50-j 200)}\right)
$$

Solution: The DC gain is 0.94
The dominant pole is at $-1+\mathrm{j} 2$

- The 2% settling time will be 4 seconds ($4 / 1$)
- The frequency of oscillation will be $2 \mathrm{rad} / \mathrm{sec}$
- The overshoot will be 20.79%
$1+j 2=2.23 \angle 63.4^{0}$
$\zeta=\cos \left(63.4^{0}\right)=0.447$
$O S=\exp \left(\frac{-\pi \zeta}{\sqrt{1-\zeta^{2}}}\right)=20.79 \%$

The actual step response is:

```
G = zpk([],[-1+j*2,-1-j*2,-10,-50+j*200,-50-j*200],2e6);
t = [0:0.001:6]';
y = step(G,t);
DC = evalfr(G,0)
DC = 0.9412
plot(t,y,'b',[0,6],[1,1]*DC,'c--')
OS = max(y) / DC
OS = 1.2021
```


Finding $\mathbf{G}(\mathrm{s})$ from the step response

- DC gain $=0.94$
- 2% Settling time $=2$ seconds
- 20% overshoot
$\zeta=0.4536$
$\theta=\arccos (\zeta)=63.02^{0}$
$s=-1+j 1.96$

$$
G(s) \approx\left(\frac{a}{(s+1+j 1.96)(s+1-j 1.96)}\right)
$$

$$
G(s) \approx\left(\frac{4.55}{(s+1+j 1.96)(s+1-j 1.96)}\right)
$$

note: you only find the dominant pole

Summary

Usually, a transfer function has one or two poles that dominate the step response

- One: a real pole
- Two: a complex conjugate pair of poles

By looking at the dominant pole(s), you can pretty much tell how the system will behave.

- The other fast poles don't really matter that much

When you specify how the system should behave, you're actually specifying where the dominant pole(s) belong

- Again, the other fast poles don't really matter that much

