# Block Diagrams and Simlink / VisSim 

ECE 461/661 Controls Systems Jake Glower - Lecture \#12

Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

## Block Diagrams

- Graphical way to describe a dynamic system
- Easier to see how systems connect



## Symbols

Summing Junction
$\mathrm{Y}=\mathrm{A}+\mathrm{B}-\mathrm{C}$

Gain
$Y=G(s) X$


Cascaded Systems
$Y=(G K) X$


Parallel Systems
$Y=(G 1+G 2) X$


Feedback:

$$
\begin{aligned}
& Y=G e \\
& e=X-Y \\
& Y=\left(\frac{G}{1+G}\right) X
\end{aligned}
$$



## General Case:

Option \#1 (always works)

- Assign dummy variables to each output
- Write N equations and solve for N unknowns.
- Solve (this takes a while)


## Option \#2 (almost always works)

- Write the transfer function by inspection as:

$$
\left(\frac{\text { Gain from input to output }}{1+\sum \text { loop gains }}\right)
$$

## Example \#1: Simplify the block

 diagramOption \#1

$$
\begin{aligned}
& \mathrm{Y}=\mathrm{G} \mathrm{u} \\
& \mathrm{u}=\mathrm{Ke} \\
& \mathrm{e}=\mathrm{R}-\mathrm{w} \\
& \mathrm{w}=\mathrm{H} \mathrm{Y}
\end{aligned}
$$

20 minutes later...

$$
Y=\left(\frac{G K}{1+G K H}\right) R
$$



## Option \#2:

By inspection:

$$
Y=\left(\frac{G K}{1+G K H}\right) R=\left(\frac{\text { Gain from input to output }}{1+\sum \text { loop gains }}\right) R
$$

## G*K



## Example 2:

Find the transfer function from U to Y


## Option \#1: Label everything

- 6 unknowns
- 6 equations

$$
\begin{aligned}
& \mathrm{a}=\mathrm{U}-\mathrm{d} \\
& \mathrm{~b}=\mathrm{A} \mathrm{a} \\
& \mathrm{c}=\mathrm{b}-\mathrm{e} \\
& \mathrm{~d}=\mathrm{B} \mathrm{c} \\
& \mathrm{Y}=\mathrm{C} \\
& \mathrm{e}=\mathrm{D}
\end{aligned}
$$



Solve and in about 20 minutes you'll get the answer.

$$
Y=\left(\frac{A B C}{1+A B+B C D}\right) U
$$

Method 1: (Simplified)

- Just label the output of the summing junction.
- 3 unknowns
- 3 equations

$$
\begin{aligned}
& \mathrm{a}=\mathrm{U}-\mathrm{Bb} \\
& \mathrm{~b}=\mathrm{Aa}-\mathrm{DY} \\
& \mathrm{Y}=\mathrm{CB} \mathrm{~b}
\end{aligned}
$$

Solving


$$
Y=\left(\frac{A B C}{1+A B+B C D}\right) U
$$

Method \#2: Use the shortcut

$$
G(s)=\left(\frac{\text { Gain from input to output }}{1+\sum \text { loop gains }}\right)
$$

By inspection

$$
Y=\left(\frac{A B C}{1+A B+B C D}\right) U
$$



## Handout Problem \#1

Find the transfer function from X to Y :


## Handout Problem \#2

Find the transfer function from X to Y


## VisSim / Simulink

- Graphical tools (drag and drop)
- Simulate dynamic systems

Simulink:

- Mathwork's version
-) MATLAB 7.12.0 (R2011a)
File Edit Debug Desktop Window Help


Shortcuts $₫$ How to Add $₫$ What Simulink

- Should be available on any computer at NDSU with Matlab
- (NDSU has a site licence for both Matlab and Simulink)


## VisSim

- Predates Simulink (1991)
- Available on-line for free
- Intuitive \& friendly
- There is a user's manual.
- I've never read it - don't need to.


## Block Diagram Simulation

Find the step resopnse

- Easy with Simulink / VisSim (VisSim shown here)



## Using VisSim

- Simulink is similar


## Uses pull-down menus

- Search for what you want
- Step Input: Block / Signal Producer / Step
- Summing Junction: Block / Arithmetic / Summing Junction
- Control / right click to change the sign on the +/- inputs
- Transfer Function: Block / Linear System / Transfer Function.
- Double click on the transfer function block.
- The transfer function is input in decreasing powers of 's'. ( $\mathrm{s}+20$ ) is input as (120):
- Plot: Block / Signal Consumer / Plot
- Flipping a block: Select the block, go to Edit
 / Flip Horizontal


## Simulation Properties

- Simulation Time
- Step Size
- Numerical Integration Method
- I prefer Runge Kutta 4th-order



## Validating your Homework Solutions:

- Each problem in this class has multiple solutions
- If it works, your answer is correct

Checking you answers

- Simulate the result in VisSim
- Include a screen dump of the simulatio
- Makes grading a lot easier



## Summary:

Block diagrams are a graphical way of explaining how a system is connected
Using algebra, you can always find the net transfer function

- It can sometimes take a lot of time to do this

This shortcut usually works

$$
G(s)=\left(\frac{\sum \text { paths from } \mathrm{X} \text { to } \mathrm{Y}}{1+\sum \text { gain around loops }}\right)
$$

