Block Diagrams and Simlink / VisSim

ECE 461/661 Controls Systems Jake Glower - Lecture #12

Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

Block Diagrams

- Graphical way to describe a dynamic system
- Easier to see how systems connect

Symbols

Feedback:

Y = Gee = X - Y $Y = \left(\frac{G}{1+G}\right)X$

General Case:

Option #1 (always works)

- Assign dummy variables to each output
- Write N equations and solve for N unknowns.
- Solve (this takes a while)

Option #2 (almost always works)

• Write the transfer function by inspection as:

 $\left(\frac{\text{Gain from input to output}}{1+\sum \text{loop gains}}\right)$

Example #1: Simplify the block diagram

Option #1

$$Y = G u$$
$$u = K e$$
$$e = R - w$$
$$w = H Y$$

20 minutes later...

$$Y = \left(\frac{GK}{1 + GKH}\right)R$$

Option #2:

By inspection:

$$Y = \left(\frac{GK}{1 + GKH}\right)R = \left(\frac{\text{Gain from input to output}}{1 + \sum \text{loop gains}}\right)R$$

Example 2:

Find the transfer function from U to Y

Option #1: Label everything

- 6 unknowns
- 6 equations
 - a = U d b = A a c = b - e d = B c Y = C de = D y

Solve and in about 20 minutes you'll get the answer.

$$Y = \left(\frac{ABC}{1 + AB + BCD}\right) U$$

Method 1: (Simplified)

- Just label the output of the summing junction.
- 3 unknowns
- 3 equations
 - a = U Bbb = Aa - DYY = CB b

Solving

$$Y = \left(\frac{ABC}{1 + AB + BCD}\right) U$$

Method #2: Use the shortcut

$$G(s) = \left(\frac{\text{Gain from input to output}}{1 + \sum \text{loop gains}}\right)$$

By inspection

Handout Problem #1

Find the transfer function from X to Y:

Handout Problem #2

Find the transfer function from X to Y

VisSim / Simulink

- Graphical tools (drag and drop)
- Simulate dynamic systems

Simulink:

- Mathwork's version
- Should be available on any computer at NDSU with Matlab
- (NDSU has a site licence for both Matlab and Simulink)

VisSim

- Predates Simulink (1991)
- Available on-line for free
- Intuitive & friendly
 - There is a user's manual.
 - I've never read it don't need to.

Block Diagram Simulation

Find the step resopnse

• Easy with Simulink / VisSim (VisSim shown here)

Using VisSim

- Simulink is similar
- Uses pull-down menus
 - Search for what you want
 - Step Input: Block / Signal Producer / Step
 - Summing Junction: Block / Arithmetic / Summing Junction
 - Control / right click to change the sign on the +/- inputs
 - Transfer Function: Block / Linear System / Transfer Function.
 - Double click on the transfer function block.
 - The transfer function is input in decreasing powers of 's'. (s+20) is input as (1 20):
 - Plot: Block / Signal Consumer / Plot
 - Flipping a block: Select the block, go to Edit / Flip Horizontal

	Transfer Function Properties
↓ 1 10 s+20	Specification Method .mat/.m File Polynomial IIR Filter .mat File Eir Filter .m File Convert S->Z Tapped Delay Discrete Display Filter Method
	Initial Value: 0 Gain: 1 (lowest order state on right) Polynomial Coefficients Numerator: 1 Denominator: 1 20 <u>QK</u> <u>Cancel</u> <u>H</u> elp

Simulation Properties

- Simulation Time
- Step Size
- Numerical Integration Method
 - I prefer Runge Kutta 4th-order

Simulation Properties			Simulation Properties	×
Range Integration Method Implicit Solver Preferences Defaults Start: Implicit Solver Implicit Solver Defaults Start: Implicit Solver Implicit Solver Defaults Start: Implicit Solver Implicit Solver Implicit Solver Start: Implicit Solver Implicit Solver Implit Solver <td< td=""><td>-</td><td>Simulation Properties Range Integration Method Implicit Solver Preferences Defaults © Euler </td><td></td></td<>		-	Simulation Properties Range Integration Method Implicit Solver Preferences Defaults © Euler	
Auto Restart Retain State OK Cancel	- 1		O Backward Euler (Stiff) Min Step Size: 1e-006 Max Truncation Error: 1e-005 Max Iteration Count: 3 OK Cancel Apply Help	

Validating your Homework Solutions:

- Each problem in this class has multiple solutions
- If it works, your answer is correct
- Checking you answers
 - Simulate the result in VisSim
 - Include a screen dump of the simulatio
 - Makes grading a *lot* easier

Summary:

Block diagrams are a graphical way of explaining how a system is connected

Using algebra, you can always find the net transfer function

• It can sometimes take a lot of time to do this

This shortcut usually works

 $G(s) = \left(\frac{\sum \text{ paths from X to Y}}{1 + \sum \text{ gain around loops}}\right)$