State-Space \& Canonical Forms

ECE 461/661 Controls Systems Jake Glower - Lecture \#13

Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

State-Space \& Canonical Forms

State-Space:

- Matrix-based way to describe a system
- How Matlab actually stores a system

Standard Form:

$$
\begin{aligned}
& s X=A X+B U \\
& Y=C X+D U
\end{aligned}
$$

Transfer Function

$$
Y=\left(C(s I-A)^{-1} B+D\right) U
$$

MATLAB Commands

- $G=\operatorname{ss}(A, B, C, D) ; \quad$ input a system in state-space form
- $G=\operatorname{tf}($ num, den $)$
- $\mathrm{G}=\mathrm{zpk}(\mathrm{z}, \mathrm{p}, \mathrm{k})$
- $\operatorname{ss}(\mathrm{G})$
- tf(G)
- $\quad \operatorname{zpk}(\mathrm{G})$
input a system in zeros, poles, gain form
determine $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ for system G (answer is not unique)
determine the transfer function of system G determine the zeros, poles, and gain of system G

Matrix Algebra

An nxm matrix has n rows and m columns.

$$
A_{2 \times 3}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]
$$

Scalar Multiplication:

$$
b A=\left[\begin{array}{lll}
b a_{11} & b a_{12} & b a_{13} \\
b a_{21} & b a_{22} & b a_{23}
\end{array}\right]
$$

Matrix Addition:

- Matrices with the same dimensions can be added:

$$
A+B=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]+\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23}
\end{array}\right]=\left[\begin{array}{lll}
a_{11}+b_{11} & a_{12}+b_{12} & a_{13}+a_{13} \\
a_{21}+b_{21} & a_{22}+b_{22} & a_{23}+b_{23}
\end{array}\right]
$$

Matrix Multiplication:

- Inner dimensions must match
- $A_{x y} \cdot B_{y z}=C_{x z}$
$\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right]\left[\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32}\end{array}\right]=\left[\begin{array}{ll}a_{11} b_{11}+a_{12} b_{21}+a_{13} b_{31} & a_{11} b_{12}+a_{12} b_{22}+a_{13} b_{32} \\ a_{21} b_{11}+a_{22} b_{21}+a_{23} b_{31} & a_{21} b_{12}+a_{22} b_{22}+a_{23} b_{32}\end{array}\right]$
$=\left[\begin{array}{ccc}\Sigma a_{1 x} b_{x 1} & \sum a_{1 x} b_{x 2} \\ \Sigma a_{2 x} b_{x 1} & \Sigma a_{2 x} b_{x 2}\end{array}\right]$

Matrix Inverse

$$
A \cdot A^{-1}=I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

For a 2×2 matrix,

$$
A^{-1}=\left[\begin{array}{c}
\frac{a_{22}}{\Delta} \\
\frac{-a_{12}}{\Delta} \\
\frac{a_{21}}{\Delta} \\
\frac{a_{11}}{\Delta}
\end{array}\right] \quad \Delta=a_{11} a_{22}-a_{12} a_{22}
$$

Placing a System in State-Space Form:

i) Write N equations for the N voltage nodes
ii) Solve for the highest derivative for each equation
iii) Rewrite in matrix form.

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=x_{2}-x_{1}+0.3 u \\
& \frac{d x}{d t}=x_{1}-1.3 x_{2} \\
& y=x_{2} \\
& s\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 1 \\
1 & -1.3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
0.3 \\
0
\end{array}\right] U \\
& Y=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+[0] U
\end{aligned}
$$

To find the transfer function in MATLAB,

$$
\begin{aligned}
& \mathrm{A}=[-1,1 ; 1,-1.3] \\
& \mathrm{B}=[0.3 ; 0] \\
& \mathrm{C}=[0,1] \\
& \mathrm{D}=0 ; \\
& \mathrm{G}=\mathrm{ss}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}) ; \\
& \mathrm{tf}(\mathrm{G}) \\
& \quad 0.3 \\
& -\mathrm{s}^{\wedge} 2+2.3 \mathrm{~s}+0.3
\end{aligned}
$$

Example: Find the transfer function from U to X 4 .

$$
\begin{aligned}
& s x_{1}=u-2 x_{1}+x_{2} \\
& s x_{2}=x_{1}-2 x_{2}+x_{3} \\
& s x_{3}=x_{2}-2 x_{3}+x_{2} \\
& s x_{4}=x_{3}-x_{4}
\end{aligned}
$$

State-Space

$$
\begin{aligned}
& s\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{cccc}
-2 & 1 & 0 & 0 \\
1 & -2 & 1 & 0 \\
0 & 1 & -2 & 1 \\
0 & 0 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] U \\
& y=\left[\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+[0] U
\end{aligned}
$$

Input this into MATLAB

```
\(\mathrm{A}=[-2,1,0,0 ; 1,-2,1,0 ; 0,1,-2,1 ; 0,0,1,-1] ;\)
B \(=[1 ; 0 ; 0 ; 0] ;\)
C \(=[0,0,0,1] ;\)
D \(=0\);
\(G=\operatorname{SS}(A, B, C, D) ;\)
tf(G)
```


zpk (G)
$\begin{array}{cc}1 \\ -1 & \\ (s+1) & (s+2.347) \\ (s+3.532) & (s+0.1206)\end{array}$

Changing the output:

- Average temperature of the bar
- Poles stay the same
- Zeros change

$$
\begin{aligned}
& y=\left[\begin{array}{llll}
0.25 & 0.25 & 0.25 & 0.25
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+[0] U \\
& \text { C }=[0.25,0.25,0.25,0.25] \text {; } \\
& \text { D = 0; } \\
& G=s s(A, B, C, D) ; \\
& \text { zpk (G) } \\
& 0.25(\mathrm{~s}+3.414)(\mathrm{s}+2)(\mathrm{s}+0.5858) \\
& (\mathrm{s}+1)(\mathrm{s}+2.347)(\mathrm{s}+3.532)(\mathrm{s}+0.1206)
\end{aligned}
$$

Handout: Express the dynamics in state-space form:

Canonical Forms

- 4th-Order system has 9 constraints

$$
Y=\left(\frac{c_{4} s^{4}+c_{3} s^{3}+c_{2} s^{2}+c_{1} s+c_{0}}{s^{4}+b_{3} s^{3}+b_{2} s^{2}+b_{1} s+b_{0}}\right) U
$$

- State-Space has 25 degrees of freedom

$$
\begin{aligned}
& s X_{4 x 1}=A_{4 x 4} X_{4 x 1}+B_{4 x 1} U \\
& Y=C_{1 x 4} X_{4 x 1}+D_{1 x 1} U
\end{aligned}
$$

There are an infinite number of ways to express a system in state-space

- Some have names (canonical forms)
- Many do not

Controller Canonical Form:

Change the problem to

$$
\begin{aligned}
& X=\left(\frac{1}{s^{4}+b_{3} s^{3}+b_{2} s^{2}+b_{1} s+b_{0}}\right) U \\
& Y=\left(c_{3} s^{3}+c_{2} s^{2}+c_{1} s+c_{0}\right) X
\end{aligned}
$$

Solve for the highest derivative of X :

$$
s^{4} X=U-b_{3} s^{3} X+b_{2} s^{2} X+b_{1} s X+b_{0} X
$$

Integrate $s^{4} \mathrm{X}$ four times to get X :

Create s4X from U and its derivatives

$$
s^{4} X=U-b_{3} s^{3} X+b_{2} s^{2} X+b_{1} s X+b_{0} X
$$

Create Y from the derivatives of X :

$$
Y=\left(c_{3} s^{3}+c_{2} s^{2}+c_{1} s+c_{0}\right) X
$$

Controller Canonical Form

Controller Canonical Form in State Space

$$
Y=\left(\frac{c_{3} s^{3}+c_{2} s^{2}+c_{1} s+c_{0}}{s^{4}+b_{3} s^{3}+b_{2} s^{2}+b_{1} s+b_{0}}\right) U
$$

$$
s\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-b_{0} & -b_{1} & -b_{2} & -b_{3}
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] U
$$

$$
Y=\left[\begin{array}{llll}
c_{0} & c_{1} & c_{2} & c_{3}
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4}
\end{array}\right]+[0] U
$$

Observer Canonical Form:

$$
\begin{aligned}
& \left(C(s I-A)^{-1} B\right)^{T}=B^{T}\left(s I-A^{T}\right)^{-1} C^{T} \\
& s\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4}
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & -b_{0} \\
1 & 0 & 0 & -b_{1} \\
0 & 1 & 0 & -b_{2} \\
0 & 0 & 1 & -b_{3}
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4}
\end{array}\right]+\left[\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] U \\
& Y=\left[\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4}
\end{array}\right]+[0] U
\end{aligned}
$$

Cascade Form:

Factor the denominator

$$
Y=\left(\frac{a_{3} s^{3}+a_{2} s^{2}+a_{1} s+a_{0}}{\left(s+p_{1}\right)\left(s+p_{2}\right)\left(s+p_{3}\right)\left(s+p_{4}\right)}\right) U
$$

Create 4 dummy states

$$
\begin{array}{ll}
X_{1}=\left(\frac{1}{s+p_{1}}\right) U & X_{2}=\left(\frac{1}{s+p_{2}}\right) X_{1} \\
X_{3}=\left(\frac{1}{s+p_{3}}\right) X_{2} & X_{4}=\left(\frac{1}{s+p_{4}}\right) X_{3}
\end{array}
$$

The output is then

$$
y=c_{1} X_{1}+c_{2} X_{2}+c_{3} X_{3}+c_{4} X_{4}
$$

Cascade Form:

$$
Y=\left(\frac{c_{4}+c_{3}\left(s+p_{4}\right)+c_{2}\left(s+p_{4}\right)\left(s+p_{3}\right)+c_{1}\left(s+p_{4}\right)\left(s+p_{3}\right)\left(s+p_{2}\right)}{\left(s+p_{1}\right)\left(s+p_{2}\right)\left(s+p_{3}\right)\left(s+p_{4}\right)}\right) U
$$

$$
\begin{array}{r}
s\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4}
\end{array}\right]= \\
{\left[\begin{array}{cccc}
-p_{1} & 0 & 0 & 0 \\
1 & -p_{2} & 0 & 0 \\
0 & 1 & -p_{3} & 0 \\
0 & 0 & 1 & -p_{4}
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4}
\end{array}\right]+\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] U} \\
{\left[X_{1}\right]}
\end{array}
$$

$$
Y=\left[\begin{array}{llll}
c_{1} & c_{2} & c_{3} & c_{3}
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4}
\end{array}\right]+[0] U
$$

Jordan Form:

Use partial fraction expansion

$$
\begin{aligned}
& Y=\left(\left(\frac{c_{1}}{s+p_{1}}\right)+\left(\frac{c_{2}}{s+p_{2}}\right)+\left(\frac{c_{3}}{s+p_{3}}\right)+\left(\frac{c_{4}}{s+p_{4}}\right)\right) U \\
& s\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4}
\end{array}\right]=\left[\begin{array}{cccc}
-p_{1} & 0 & 0 & 0 \\
0 & -p_{2} & 0 & 0 \\
0 & 0 & -p_{3} & 0 \\
0 & 0 & 0 & -p_{4}
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4}
\end{array}\right]+\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right] U \\
& Y=\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4}
\end{array}\right]+[0] U
\end{aligned}
$$

Summary

State-space is a way to express the dynamics using matrices

- It's how Matlab stores dynamic systems

There are an infinite number of solutions

- Pick your favorite canonical form

If the numerator has 's' terms, you don't have to take derivatives

- Numerator terms show up in the B and/or C matrices

Matlab is useful for going from state-space to transfer function form

