Mass \& Spring Systems \& The Wave Equation

ECE 461/661 Controls Systems Jake Glower - Lecture \#15

Please visit Bison Academy for corresponding
lecture notes, homework sets, and solutions

Mass \& Spring Systems

Each mass has two energy states: Differential equation is of order 2 N

- Kinetic Energy
- Potential Energy

Stategy: (Electrical engineering approach to mass / spring systems)

- Replace the mass, spring, and friction terms with their LaPlace admittance,
- Redraw the system as an electric circuit, and
- Write the voltage node equations.

LaPlace Admittances

- Force = Current
- Position = Voltage
Mechanical World

Electrical World
Force $=$ Mass * Acceleration
Current = Admittance * Voltage

	Symbol	$\mathrm{F}=\ldots$	LaPlace Addmittance
Mass	\square	$\mathrm{f}=\mathrm{m} \mathrm{x}^{\prime \prime}$	$\mathrm{s}^{2} \mathrm{~m}$
Spring	Q	$\mathrm{f}=\mathrm{kx}$	k
Friction	\square	$\mathrm{f}=\mathrm{B} \mathrm{x}^{\prime}$ $\mathrm{f}=\mathrm{f}_{\mathrm{v}} \mathrm{x}^{\prime}$	sB sf

Example: Mass Spring System

Step 1: Draw the circuit equivalent:

Step 2: Write the voltage node equations

$$
\begin{aligned}
& \left(K_{1}+B_{1} s+M_{1} s^{2}+K_{2}+B_{3} s\right) X_{1}-\left(K_{2}+B_{3} s\right) X_{2}=F \\
& \left(M_{2} s^{2}+B_{2} s+K_{3}+K_{2}+B_{3} s\right) X_{2}-\left(K_{2}+B_{3} s\right) X_{1}=0
\end{aligned}
$$

Step 3: Solve

- hint: use State-Space

Solve for the highest derivative:

$$
\begin{aligned}
& M_{1} s^{2} X_{1}=-\left(K_{1}+K_{2}+B_{1} s+B_{3} s\right) X_{1}+\left(K_{2}+B_{3} s\right) X_{2}+F \\
& M_{2} s^{2} X_{2}=-\left(B_{2} s+K_{3}+K_{2}+B_{3} s\right) X_{2}+\left(K_{2}+B_{3} s\right) X_{1}
\end{aligned}
$$

Place in matrix form

$$
s\left[\begin{array}{c}
X_{1} \\
X_{2} \\
\cdots \\
s X_{1} \\
s X_{2}
\end{array}\right]=\left[\begin{array}{ccccc}
0 & 0 & \vdots & 1 & 0 \\
0 & 0 & \vdots & 0 & 1 \\
\cdots & \cdots & \ldots & \cdots \\
\left(\frac{-\left(K_{1}+K_{2}\right)}{M_{1}}\right) & \left(\frac{K_{2}}{M_{1}}\right) & \vdots & \left(\frac{-\left(B_{1}+B_{3}\right)}{M_{1}}\right) & \left(\frac{B_{3}}{M_{1}}\right) \\
\left(\frac{K_{2}}{M_{2}}\right) & \left(\frac{-\left(K_{2}+K_{3}\right)}{M_{2}}\right) & \vdots & \left(\frac{B_{3}}{M_{2}}\right) & \left(\frac{\left(-\left(B_{2}+B_{3}\right)\right.}{M_{2}}\right)
\end{array}\right]\left[\begin{array}{c}
X_{1} \\
X_{2} \\
\cdots \\
s X_{1} \\
s X_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
\cdots \\
\left(\frac{1}{M_{1}}\right) \\
0
\end{array}\right] F
$$

$$
Y=X_{2}=\left[\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
X_{1} \\
X_{2} \\
s X_{1} \\
s X_{2}
\end{array}\right]+[0] F
$$

Note that

- You have 2 N states, where N is the number of masses. Each mass has two energy states (kinetic and potential energy) giving your 2 N state variables.
- The first N rows are [$0: \mathrm{I}$] where I is the identity matrix. This tells MATLAB that the states are position and velocity.
- The last N rows are where the dynamics come into play.

Also also, you can have real or complex poles for mass-spring systems - unlike the heat equation which always has real poles.

Finding the Transfer Function to $\mathbf{X 2}$

Assume $\mathrm{M}=1 \mathrm{~kg}, \mathrm{~B}=2 \mathrm{Ns} / \mathrm{m}, \mathrm{K}=10 \mathrm{~N} / \mathrm{m}$

$$
s\left[\begin{array}{c}
X_{1} \\
X_{2} \\
s X_{1} \\
s X_{2}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-20 & 10 & -4 & 2 \\
10 & -20 & 2 & -4
\end{array}\right]\left[\begin{array}{c}
X_{1} \\
X_{2} \\
s X_{1} \\
s X_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right] F
$$

```
\(A=[0,0,1,0 ; 0,0,0,1 ;-20,10,-4,2 ; 10,-20,2,-4] ;\)
\(B=[0 ; 0 ; 1 ; 0] ;\)
C \(=[0,1,0,0] ;\)
D \(=0\);
\(G=\operatorname{ss}(A, B, C, D)\)
```

zpk(G)
$2(s+5)$
$\left(s^{\wedge} 2+2 s+10\right)\left(s^{\wedge} 2+6 s+30\right)$

2nd-Order Approximation

- Dominant pole: $\mathrm{s}=-1+/-\mathrm{j} 3$
- DC gain $=0.03333$

$$
\begin{aligned}
D C= & \operatorname{evalfr}(G, 0) \\
& 0.0333333
\end{aligned}
$$

So

$$
X_{2} \approx\left(\frac{0.3333}{(s+1 \pm j 3)}\right) F
$$

Wave Equation: (fun stuff)

N masses connected by springs:

- Coupled 2nd-order differential equations

$$
\frac{d^{2} x_{i}}{d t^{2}}=f\left(x_{i-1}, x_{i}, x_{i+1}\right)
$$

-"Wave Equation"

Cascaded Mass-Spring Systems creates the Wave equation

Dynamics:

Node \#2

$$
\begin{aligned}
& M s^{2} x_{2}=K x_{1}-2 K x_{2}+K x_{3} \\
& s^{2} x_{2}=\left(\frac{K}{M}\right) x_{1}-\left(\frac{2 K}{M}\right) x_{2}+\left(\frac{K}{M}\right) x_{3}
\end{aligned}
$$

Other nodes are similar

With 30 nodes, you get a 60th order differential equation

- Each node has two energy states
- Potential Energy
- Kinetic Energy

30-Node Model

- $\mathrm{K} / \mathrm{M}=50$
- Friction to ground $=0.01$
- Snap V0

Produces a traveling wave

$t=2$ seconds. Wave traveling to the right

Reflections:

- Free endpoint causes a + reflection

$t=5$ seconds. Wave hits the right endpoint

$t=7$ seconds. Reflection is now traveling to the left

Really hard system to control

- 60th order system
- All 60 poles are dominant
- All on the jw axis
- Scattered from -j14.5 to +j 14.5
- 2nd-Order approximations don't work well for this system

Wave.m

$\mathrm{N}=30$; $\%$ number of nodes
$\mathrm{V}=\operatorname{zeros}(\mathrm{N}, 1) ;$
$d V=\operatorname{zeros}(N, 1) ;$
$\mathrm{t}=0$;
$d t=0.01 ;$
while(t < 100)

```
if (t < 2) V0 = 100* ( ( sin(0.5*pi*t) )^2 );
    else V0 = 0;
    end
ddV(1) = 50*V0 - 100*V(1) + 50*V(2) - 0.01*dV(1);
for i=2:N-1
    ddV(i) = 50*V(i-1) - 100*V(i) + 50*V(i+1) - 0.01*dV(i);
    end
ddV(N) = 50*V(N-1) - 50*V(N) - 0.01*dV (N);
for i=1:N
    dV(i) = dV(i) + ddV(i)*dt;
```

```
        V(i) = V(i) + dV(i)*dt;
        end
    t = t + dt;
    plot([0:N],[V0;V],'.-');
    ylim([-100,150]);
    pause(0.01);
    end
```

