# Rotational Systems \& Gears 

ECE 461/661 Controls Systems
Jake Glower - Lecture \#16

Please visit Bison Academy for corresponding
lecture notes, homework sets, and solutions

## Rotational Systems

Rotational systems behave exactly like translational systems, except that

- Force becomes Torque
- Position becomes Angle

Translational Systems


Spring



Example: Draw the circuit equivalent


Inertia - Spring Rotational System


Circuit Equivalent

Node Equations:

$$
\begin{aligned}
& \left(J_{1} s^{2}+D_{1} s+K_{1}\right) \theta_{1}-\left(K_{1}\right) \theta_{2}=T \\
& \left(J_{2} s^{2}+D_{2} s+K_{1}+K_{2}\right) \theta_{2}-\left(K_{1}\right) \theta_{1}-\left(K_{2}\right) \theta_{3}=0 \\
& \left(J_{3} s^{2}+D_{3} s+K_{2}+K_{3}\right) \theta_{3}-\left(K_{2}\right) \theta_{2}=0
\end{aligned}
$$



Solve for the highest derivative:

$$
\begin{aligned}
& s^{2} \theta_{1}=-\left(\frac{D_{1}}{J_{1}} s+\frac{K_{1}}{J_{1}}\right) \theta_{1}+\left(\frac{K_{1}}{J_{1}}\right) \theta_{2}+\left(\frac{1}{J_{1}}\right) T \\
& s^{2} \theta_{2}=-\left(\frac{D_{2} s}{J_{2}}+\frac{K_{1}+K_{2}}{J_{2}}\right) \theta_{2}+\left(\frac{K_{1}}{J_{2}}\right) \theta_{1}+\left(\frac{K_{2}}{J_{2}}\right) \theta_{3} \\
& s^{2} \theta_{3}=-\left(\frac{D_{3} s}{J_{3}}+\frac{K_{2}+K_{3}}{J_{3}}\right) \theta_{3}+\left(\frac{K_{2}}{J_{3}}\right) \theta_{2}
\end{aligned}
$$

Place in matrix form

$$
\left[\begin{array}{c}
s \theta_{1} \\
s \theta_{2} \\
s \theta_{3} \\
\cdots \\
s^{2} \theta_{1} \\
s^{2} \theta_{2} \\
s^{2} \theta_{3}
\end{array}\right]=\left[\begin{array}{ccccccc}
0 & 0 & 0 & \vdots & 1 & 0 & 0 \\
0 & 0 & 0 & \vdots & 0 & 1 & 0 \\
0 & 0 & 0 & \vdots & 0 & 0 & 1 \\
\cdots & \ldots & \cdots & \ldots & \cdots & \cdots \\
-\left(\frac{K_{1}}{I_{1}}\right) & \left(\frac{K_{1}}{J_{1}}\right) & 0 & \vdots & -\left(\frac{D_{1}}{J_{1}}\right) & 0 & 0 \\
\left(\frac{K_{1}}{J_{2}}\right) & -\left(\frac{K_{1}+K_{2}}{J_{2}}\right) & \left(\frac{K_{2}}{J_{2}}\right) & \vdots & 0 & -\left(\frac{D_{2}}{J_{2}}\right) & 0 \\
0 & \left(\frac{K_{2}}{J_{3}}\right) & -\left(\frac{K_{2}+K_{3}}{J_{3}}\right) & \vdots & 0 & 0 & -\left(\frac{D_{3}}{J_{3}}\right)
\end{array}\right]\left[\begin{array}{c}
\theta_{1} \\
\theta_{2} \\
\theta_{3} \\
\cdots \\
s \theta_{1} \\
s \theta_{2} \\
s \theta_{3}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
0 \\
\cdots \\
\left(\frac{1}{J_{1}}\right) \\
0 \\
0
\end{array}\right] T
$$

## Gears

Gears are like transformers:

- They convert one speed to another as the gear ratio,
- They convert one impedance to another as the gear ratio squared.


## Requirements



- Distance traveled at the interface must match
- Power In = Power Out

Distance Traveled at the Interface must Match
distance $=r \theta$

$$
\begin{aligned}
& d_{1}=r_{1} \theta_{1} \\
& d_{2}=r_{2} \theta_{2} \\
& d_{1}=d_{2} \\
& r_{1} \theta_{1}=r_{2} \theta_{2}
\end{aligned}
$$

or

$$
\begin{aligned}
& \theta_{1}=\left(\frac{r_{2}}{r_{1}}\right) \theta_{2} \\
& \dot{\theta}_{1}=\left(\frac{r_{2}}{r_{1}}\right) \dot{\theta}_{2}
\end{aligned}
$$



The forces at the interface must match

$$
\begin{aligned}
& T_{1}=F_{1} r_{1} \\
& T_{2}=F_{2} r_{2}
\end{aligned}
$$

$$
F_{1}=F_{2}
$$

$$
\frac{T_{1}}{r_{1}}=\frac{T_{2}}{r_{2}}
$$

$$
T_{1}=\left(\frac{r_{1}}{r_{2}}\right) T_{2}
$$

Energy must balance

$$
T_{1} \dot{\theta}_{1}=T_{2} \dot{\theta}_{2}
$$



## Impedance \& Gears

Assume Gear \#1 has inertia J1. What does gear \#2 see?

$$
\begin{aligned}
& T_{1}=J_{1} s^{2} \theta_{1} \\
& \left(\frac{r_{1}}{r_{2}}\right) T_{2}=\left(J_{1} s^{2}\right)\left(\frac{r_{2}}{r_{1}}\right) \theta_{2} \\
& T_{2}=\left(\frac{r_{2}}{r_{1}}\right)^{2}\left(J_{1} s^{2}\right) \theta_{2}
\end{aligned}
$$

Relative to gear \#2, inertial J1 looks like an inertia of

$$
J=\left(\frac{r_{2}}{r_{1}}\right)^{2} J_{1}
$$

Impedances go through a gear as the turn ratio squared

## Rotational System with Gears

i) Draw the circuit equivalent with the gears


## Remove the gears

$$
Y_{\text {new }} \Rightarrow\left(\frac{\text { where going to }}{\text { where coming from }}\right)^{2} Y_{\text {old }}
$$

1 : 5
1 : 5


Now write the node equations

- note: angles are now different: scalar multiples of q1, q2, q3
- from here on, it's the same as before

$$
\begin{aligned}
& \left(J_{1} s^{2}+D_{1} s+K_{1}\right) \phi_{1}-\left(K_{1}\right) \phi_{2}=T \\
& \left(\frac{J_{2}}{5^{2}} s^{2}+\frac{D_{2}}{5^{2}} s+K_{1}+\frac{K_{2}}{5^{2}}\right) \phi_{2}-\left(K_{1}\right) \phi_{1}-\left(\frac{K_{2}}{5^{2}}\right) \phi_{3}=0 \\
& \left(\frac{J_{3}}{25^{2}} s^{2}+\frac{D_{3}}{25^{2}} s+\frac{K_{3}}{25^{2}}+\frac{K_{2}}{5^{2}}\right) \phi_{3}-\left(\frac{K_{2}}{5^{2}}\right) \phi_{2}=0
\end{aligned}
$$



## Handout:

Draw the circuit equivalent for the following mass-spring system. Assume

- $\mathrm{J}=1 \mathrm{~kg}, \mathrm{~B}=0.2 \mathrm{Nms} / \mathrm{rad}, \mathrm{K}=10 \mathrm{~N} / \mathrm{rad}$

Write the equations of motion (i.e. write the voltage node equations)


## DC Servo Motors

- Type of motor
- Used to control rotational systems Advantages:
- Current is Torque
- Voltage is speed (sort of)
- Easy to model
- Easy to power (DC signal)

Disadvantatges

- Larger than AC motors
- More expensive than AC motors
- Less efficient than AC motors


1980 vs. 2020 Technology

## DC Servo Motor Internal Workings

Internally, a DC motor has

- A permanent magnet (field winding) on the outside,
- An electromagnet on the inside (armature), and
- A commutator which switches the polarity of the current (voltage) so that the torque remains in the same direction as the motor spins.

A DC servo motor is essentially an electromagnet

## Circuit Equivalent

Kt is the

- The torque constant ( Nm / Amp )
- The back EMF (Volts / rad/sec)

MKS: The units are the same ( Kt is the same )


Circuit equivalent for a DC servo motor

## Motor Dynamics

$$
\begin{aligned}
& V_{a}=K_{t}(s \theta)+\left(R_{a}+L_{a} s\right) I_{a} \\
& K_{t} I_{a}=\left(J s^{2}+D s\right) \theta
\end{aligned}
$$

Solving gives

$$
\begin{aligned}
& \theta=\left(\frac{1}{s}\right)\left(\frac{K_{t}}{(J s+D)\left(L_{a} s+R_{a}\right)+K_{t}^{2}}\right) V_{a} \\
& \omega=\frac{d \theta}{d t}=\left(\frac{K_{t}}{(J s+D)\left(L_{a} s+R_{a}\right)+K_{t}^{2}}\right) V_{a}
\end{aligned}
$$



## Motor Example:

## Electrocraft RDM103

- $K_{t}=0.03 \mathrm{Nm} / \mathrm{A}$
- Terminal resistance $=1.6 \quad(\mathrm{Ra})$
- Armature inductance $=4.1 \mathrm{mH}(\mathrm{La})$
- Rotor Inertia $=0.008 \mathrm{oz}-\mathrm{in} / \mathrm{sec} / \mathrm{sec}$
- Damping Contant $=0.25 \mathrm{oz}-\mathrm{in} / \mathrm{krpm}$
- Torque Constant $=13.7$ oz-in/amp
- Peak current $=34 \mathrm{amps}$
- Max operating speed $=6000 \mathrm{rpm}$

$\mathrm{Kt}: 13.7 \frac{0 z-i n}{a m p}\left(\frac{1 m}{39.4 i n}\right)\left(\frac{1 l b}{160 z}\right)\left(\frac{0.454 \mathrm{~kg}}{\mathrm{lb}}\right)\left(\frac{9.8 \mathrm{~N}}{\mathrm{~kg}}\right)=0.0967\left(\frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{~A}}\right)$
D: $\quad 0.25\left(\frac{\mathrm{oz} \text { in } \mathrm{min}}{\text { krev }}\right)\left(\frac{1 \mathrm{Nm}}{141.7 o z-i n}\right)\left(\frac{60 \mathrm{sec}}{\min }\right)\left(\frac{\mathrm{krev}}{1000 \mathrm{rev}}\right)\left(\frac{\mathrm{rev}}{2 \pi r a d}\right)=1.68 \cdot 10^{-5}\left(\frac{\mathrm{Nm}}{\text { radl } \mathrm{sec}}\right)$
$\mathrm{J}: \quad 0.008\left(\frac{o z-i n}{\mathrm{sec}^{2}}\right)\left(\frac{\mathrm{Nm}}{141.7 o z-i n}\right)\left(\frac{\mathrm{kg}}{9.8 N}\right)=5.76 \cdot 10^{-6}\left(\frac{\mathrm{~kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2}}\right)$

Plugging in numbers:

$$
\theta=\left(\frac{10.31 \cdot 630^{2}}{s\left(s^{2}+393 s+630^{2}\right)}\right) V=\left(\frac{10.31(630)^{2}}{s(s+196.5+j 598)(s+196.5-j 598)}\right) V
$$

This means....

- DC gain $=10.31$
$0+12 \mathrm{~V}$ input makes it spin $123.72 \mathrm{rad} / \mathrm{sec}$
- It takes about 20 ms for the motor to get up to speed (Ts = 4/196)
$35 \%$ overshoot for the step response
- damping ratio $=0.3119$
- Note: overshoot goes away if you connect the motor to something
- Inertia increases



## Gears and Wheels:

Wheels are gears

- Convert translation to angle
- $x=r \theta$


## Example: Battle Bots

- Find the dynamics of the previous motor if it is driving a cart
- Cart mass $=2 \mathrm{~kg}$
- Wheel radius $=1.5 \mathrm{~cm}$


First, draw the circuit equivalent


Remove the gear by translating the 2 kg mass to the motor angle

$$
\begin{aligned}
& x=r \theta \\
& 2 \mathrm{~kg} \cdot\left(\frac{r}{1}\right)^{2}=0.0018 \mathrm{~kg} \mathrm{~m}
\end{aligned}
$$

The net inertia is then

$$
\begin{aligned}
& J_{\text {total }}=J_{\text {motor }}+J_{\text {mass }} \\
& =5.76 \cdot 10^{-6}+0.0018=0.00180576
\end{aligned}
$$

The motor dynamics are then

$$
\theta=\left(\frac{13061}{s(s+3.273)(s+387)}\right) V_{a}
$$

The added inertia shifted the complex poles


## Summary

Rotational systems are similar to translational systems

- $\mathrm{Js}^{2}$ vs. $\mathrm{Ms}^{2}$
- Ds vs. Bs
- K vs. K

Drawing the circuit equivalent helps in writing the dynamic equations

Gears act like transformers

- Speed goes through gears as the turns-ratio
- Admittances go through gears as the turn-ratio squared

