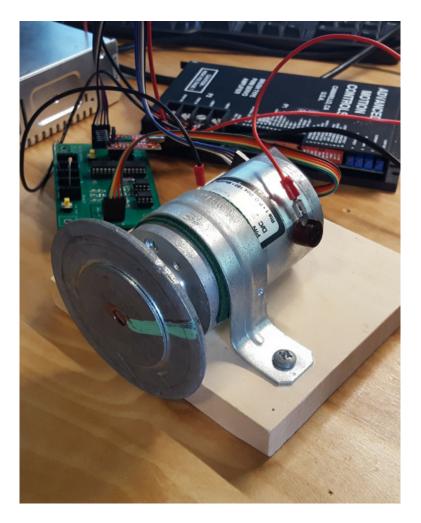
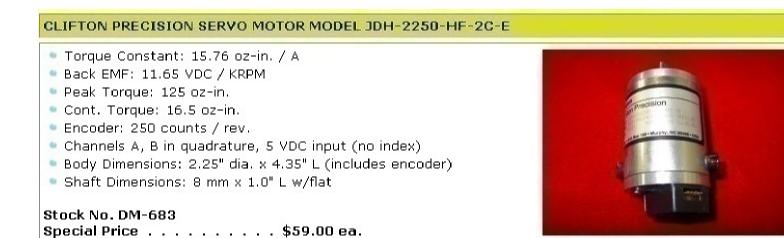
Modeling a DC Servo Motor ECE 461/661 Controls Systems Jake Glower - Lecture #17


Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

Problem: Determine the model for a DC servo motor

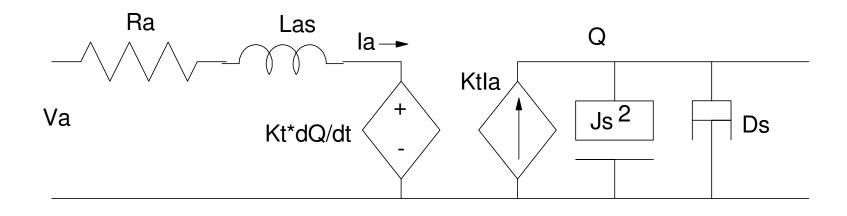
• Clifton 000-053479-002

•
$$\theta = \left(\frac{1}{s}\right) \left(\frac{K_t}{(Js+D)(L_as+R_a)+K_t^2}\right) V_a$$


Unfortunately, the dynamics are not printed on the motor (common problem)

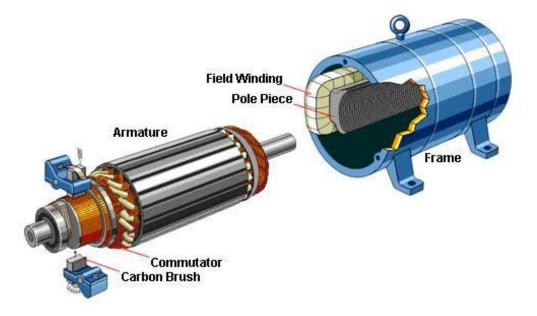
Finding the Dynamics (Option #1)

Find the data sheets:


- www.ServoSystems.com from 2002
- Missing some information.
- Often times you can't find the data sheets...

Option #2: Take some measurements

You only need five parameters to define the DC servo motor


- Ra: Armature Resistance
- La: Armature Inductance
- Kt: Torque Constant
- J: Rotor Inertia
- D: Rotor friction

Armature Construction

The armature is essentially an electromagnet

- Multiple windings of copper wire around an iron core
- This makes a resistor
- This also makes an inductor

Ra: Armature Resistance

- Ra = 26.5 Ohms
- Turn off the motor
 - The back EMF will mess up the resistance measurement
- Disconnect from the power supply
 - The power supply will mess up the resistance measurement
- Measure R
 - Varies as you rotate the motor
 - Each winding will have slightly different resistance

La: Armature Inductance

- La = 12.698mH
- Turn off the motor
- Disconnect from the power supply
- Measure L
 - Requires an inductance meter
 - Usually this is small and can be assumed to be zero

Kt: Torque Constant

Option #1: Find the data sheets

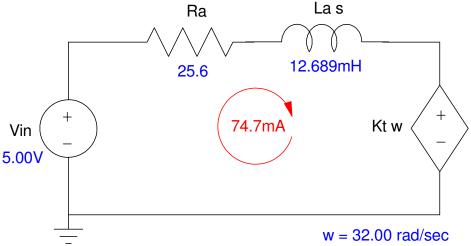
- Old posting from ServoSystems c. 1998
- Torque Constant = 15.76 oz-in / A

$$K_t = \left(15.76\frac{oz \cdot in}{A}\right) \left(\frac{1lb}{16oz}\right) \left(\frac{4.45N}{lb}\right) \left(\frac{0.0254m}{in}\right) = 0.11133\frac{Nm}{A}$$

• Torque Constant = 11.65V/krpm

$$K_{t} = \left(11.65 \frac{V \cdot \min}{krev}\right) \left(\frac{1krev}{1000rev}\right) \left(\frac{60 \sec}{1\min}\right) \left(\frac{1rev}{2\pi rad}\right)$$
$$K_{t} = 0.111249 \frac{V}{rad/\sec}$$

Note


• Both Kt's are the same if using mks units

Kt: Torque Constant (cont'd)

Option #2:

Apply a constant voltage (5.00V) Measure the resulting speed (32.00 rad/sec) Measure the current draw (74.7mA) $V_a = I_a R_a + K_t \omega$ $5.00V = 74.7mA \cdot 26.5\Omega + K_t \cdot 32.00 \frac{rad}{sec}$

$$K_t = 0.094389 \frac{V}{rad/\sec}$$

Close to the data sheets:

Kt = 0.111249 V / rad/sec

D: Motor Friction

• No-Load Speed = 32.00 rad/sec @ 5.00V @ 74.7mA

Energy must balance

Power In = Power Out $VI = T\omega = (D\omega)\omega = D\omega^2$ $(5.00V)(74.7mA) = D \cdot \left(32.00\frac{rad}{sec}\right)^2$

Assuming other losses are zero

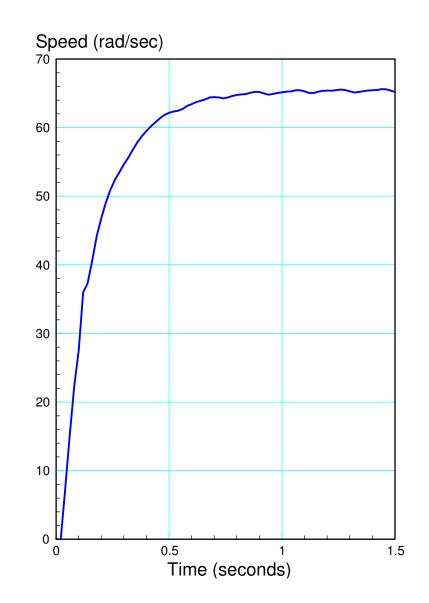
 $D = 0.000364 \frac{Nm}{rad/sec}$

J: Rotor Inertia (calculations)

Flywheel: 91mm dia x 5mm thick flywheel, solid iron

$$m = \left(7.847 \frac{gm}{cc}\right) \left(\pi \cdot (4.55cm)^2\right) (0.5cm) = 255gm = 0.255kg$$
$$J = \frac{1}{2}mr^2 = \frac{1}{2}(0.255kg)(0.0455m)^2 = 0.000264kgm^3$$

Core: 20mm dia x 40mm long, solid iron


$$m = \left(7.847 \frac{gm}{cc}\right) \left(\pi \cdot (1cm)^2\right) (4cm) = 98.6gm = 0.0986kg$$
$$J = \frac{1}{2}mr^2 = \frac{1}{2}(0.0986kg)(0.01m)^2 = 0.00000493 \, kg \, m^3$$

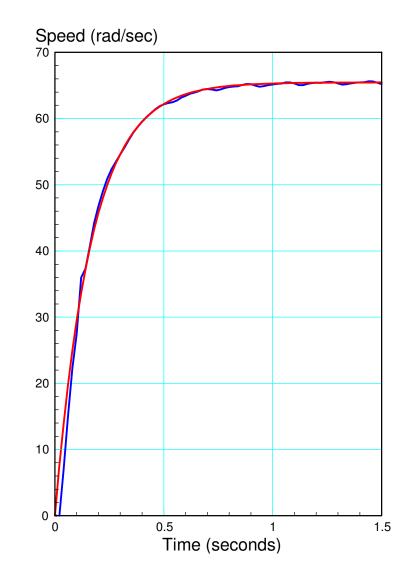
Total:

 $J = 0.000 \ 268 \ 9 \ kg \ m^2$

Option #2 to find D and J

- Experimental
- Apply a step input (+10V step)
- Measure the speed vs. time
- From the step response, determine the transfer function
 - First order
 - DC gain = 6.40 (10V input)
 - Settling time = 4/6 second

J: Rotor Inertia (cont'd)


- Blue = Actual Motor
- Red = 1st-order model $\omega \approx \left(\frac{39.28}{s+6}\right) V_a$

Matching Terms

$$\boldsymbol{\omega} = \left(\frac{K_t}{(Js+D)(Ls+R)+K_t^2}\right) V_a$$

Assuming L = 0

$$\boldsymbol{\omega} = \left(\frac{K_t}{JRs + DR + K_t^2}\right) V_a$$
$$\boldsymbol{\omega} = \left(\frac{\left(\frac{K_t}{JR}\right)}{s + \left(\frac{DR + K_t^2}{JR}\right)}\right) V_a$$

Matching Terms

$$\left(\frac{39.28}{s+6}\right) = \left(\frac{\binom{K_t}{JR}}{s+\binom{DR+K_t^2}{JR}}\right)$$
$$\left(\frac{K_t}{JR}\right) = 39.28$$
$$J = 0.00009068 \ kg \ m^2$$

$$\left(\frac{DR+K_t^2}{JR}\right) = 6$$

 $D = 0.000207 \frac{Nm}{rad/sec}$

Experimental results are slightly different

<pre>File Edit Debug Desktop Window Help</pre>	🗚 M	MATLAB 7.12.0 (R2011a)
<pre>Shotcuts 2 How to Add 2 What's New >> R = 26.5; >> L = 0.0127; >> Kt = 0.09438; >> J = Kt/R/39.28 J = 9.0670e-005 >> D = (6*J*R - Kt^2) / R D = 2.0788e-004 >> G = tf(Kt, [J*L, J*R+D*L,D*R+Kt^2]) Transfer function:</pre>		
<pre>>> R = 26.5; >> L = 0.0127; >> Kt = 0.09438; >> J = Kt/R/39.28 J = 9.0670e-005 >> D = (6*J*R - Kt^2) / R D = 2.0788e-004 >> G = tf(Kt, [J*L, J*R+D*L,D*R+Kt^2]) Transfer function:</pre>		
<pre>>> L = 0.0127; >> Kt = 0.09438; >> J = Kt/R/39.28 J = 9.0670e-005 >> D = (6*J*R - Kt^2) / R D = 2.0788e-004 >> G = tf(Kt, [J*L, J*R+D*L,D*R+Kt^2]) Transfer function:</pre>	Sho	ortcuts 🗷 How to Add 💽 What's New
<pre>>> Kt = 0.09438; >> J = Kt/R/39.28 J = 9.0670e-005 >> D = (6*J*R - Kt^2) / R D = 2.0788e-004 >> G = tf(Kt, [J*L, J*R+D*L,D*R+Kt^2]) Transfer function:</pre>		>> R = 26.5;
<pre>>> J = Kt/R/39.28 J = 9.0670e-005 >> D = (6*J*R - Kt^2) / R D = 2.0788e-004 >> G = tf(Kt, [J*L, J*R+D*L,D*R+Kt^2]) Transfer function: 0.09438 1.152e-006 s^2 + 0.002405 s + 0.01442 >> zpk(G) Zero/pole/gain:</pre>		>> L = 0.0127;
<pre>J = 9.0670e-005 >> D = (6*J*R - Kt^2) / R D = 2.0788e-004 >> G = tf(Kt, [J*L, J*R+D*L,D*R+Kt^2]) Transfer function:</pre>		>> Kt = 0.09438;
<pre>9.0670e-005 >> D = (6*J*R - Kt^2) / R D = 2.0788e-004 >> G = tf(Kt, [J*L, J*R+D*L,D*R+Kt^2]) Transfer function: 0.09438 </pre>		>> J = Kt/R/39.28
<pre>9.0670e-005 >> D = (6*J*R - Kt^2) / R D = 2.0788e-004 >> G = tf(Kt, [J*L, J*R+D*L,D*R+Kt^2]) Transfer function: 0.09438 </pre>		
<pre>>> D = (6*J*R - Kt^2) / R D = 2.0788e-004 >> G = tf(Kt, [J*L, J*R+D*L,D*R+Kt^2]) Transfer function:</pre>		J =
<pre>>> D = (6*J*R - Kt^2) / R D = 2.0788e-004 >> G = tf(Kt, [J*L, J*R+D*L,D*R+Kt^2]) Transfer function:</pre>		
<pre>D = 2.0788e-004 >> G = tf(Kt, [J*L, J*R+D*L,D*R+Kt^2]) Transfer function:</pre>		9.0670e-005
<pre>D = 2.0788e-004 >> G = tf(Kt, [J*L, J*R+D*L,D*R+Kt^2]) Transfer function:</pre>		
<pre>D = 2.0788e-004 >> G = tf(Kt, [J*L, J*R+D*L,D*R+Kt^2]) Transfer function:</pre>		>> D = $(6*J*R - Kt^2) / R$
<pre>2.0788e-004 >> G = tf(Kt, [J*L, J*R+D*L,D*R+Kt^2]) Transfer function:</pre>		
<pre>>> G = tf(Kt, [J*L, J*R+D*L,D*R+Kt^2]) Transfer function:</pre>		D =
<pre>>> G = tf(Kt, [J*L, J*R+D*L,D*R+Kt^2]) Transfer function:</pre>		
Transfer function: 0.09438 1.152e-006 s^2 + 0.002405 s + 0.01442 >> zpk(G) Zero/pole/gain:		2.0788e-004
Transfer function: 0.09438 1.152e-006 s^2 + 0.002405 s + 0.01442 >> zpk(G) Zero/pole/gain:		
Transfer function: 0.09438 1.152e-006 s^2 + 0.002405 s + 0.01442 >> zpk(G) Zero/pole/gain:		>> G = tf(Kt, [J*L, J*R+D*L,D*R+Kt^2])
0.09438 1.152e-006 s^2 + 0.002405 s + 0.01442 >> zpk(G) Zero/pole/gain:		
 1.152e-006 s^2 + 0.002405 s + 0.01442 >> zpk(G) Zero/pole/gain:		Transfer function:
>> zpk(G) Zero/pole/gain:		0.09438
>> zpk(G) Zero/pole/gain:		
>> zpk(G) Zero/pole/gain:		1.152e-006 s^2 + 0.002405 s + 0.01442
Zero/pole/gain:		
Zero/pole/gain:		>> zpk(G)
		Zero/pole/gain:
(s+2083) (s+6.011)		(s+2083) (s+6.011)
	~	

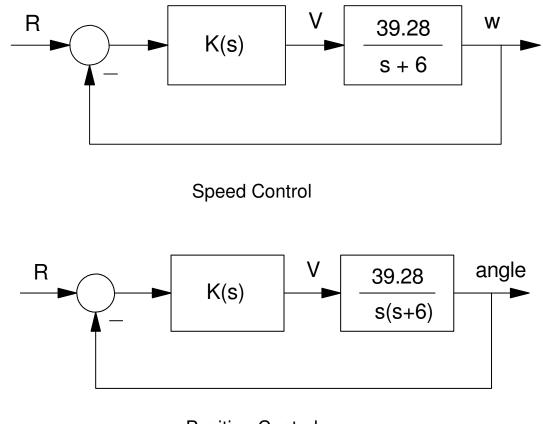
Net Result:

- Ra = 26.5 Ohms
- La = 12.7 mH
- Kt = 0.09438 V / rad/sec
- J = 0.000 090 68 kg m2
- D = 0.000 207 Nm / rad/sec

$$\omega = \left(\frac{K_t}{(Js+D)(Ls+R)+K_t^2}\right) V_a$$
$$\omega = \left(\frac{81962}{(s+6.01)(s+2083)}\right) V_a$$
$$\omega \approx \left(\frac{39.28}{s+6}\right) V_a$$


	IATLAB 7.12.0 (R2011a)	×
	Edit Debug Desktop Window Help	
	🚰 👗 ங 🛍 🤊 🍽 🦣 🗊 🖹 🥝 🗠 C:\Documents and Settings\Administrator' 🔽 🛄 🖻)
	ortcuts 🛃 How to Add 🛛 What's New	
	>> R = 26.5;	
	>> L = 0.0127;	
	>> Kt = 0.09438;	
	>> J = Kt/R/39.28	
	J =	
	9.0670e-005	
	>> D = $(6*J*R - Kt^2) / R$	
	D =	
	D -	
	2.0788e-004	
	>> G = tf(Kt, [J*L, J*R+D*L,D*R+Kt^2])	
	Transfer function:	
	0.09438	
	1.152e-006 s^2 + 0.002405 s + 0.01442	
	>> zpk(G)	
	Zero/pole/gain:	
	81962.2047	
	(s+2083) (s+6.011)	
fx,		~
4 5	tart OVR	

Significance:


1. The mathematical model

$$\boldsymbol{\omega} \approx \left(\frac{39.28}{s+6}\right) V_a$$

is a good approximation for the motor's actual dynamics.

2. Controllers which work for this model should work on the actual motor

Position Control

3) With just a few tests, you can determine the dynamics of a DC servo motor