Error Constants and Steady-State Error

ECE 461/661 Controls Systems Jake Glower - Lecture #18

Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

Unity Feedback

- Compare the desired output (R = Reference) to the actual output (Y)
- Creates an error driven device

Example: Cruise control on a car

- If R > Y (E > 0), accelerate
- If R < Y (E < 0), decelerate
- If R = Y (E = 0), do nothing

Error Constants

What is the steady state error?

• Zero is the goal

What is the steaty-state error for

- R = 1 (unit step) models tracking a constant set point
- R = t (unit ramp) models tracking a set point with constant velocity
- $R = t^2$ (unit parabola) models tracking a set point with constant acceleration

Error constants attempt to assign a single number to a system

- Bigger is better
- Large error constants mean small error

Definitions:

Type N System: The plant, G(s), has N poles at s=0.

Error Constants: Kp, Kv, Ka. The DC gain of a plant:

Kp: The DC gain of a type-0 system

• $K_p = \lim_{s \to 0} (G(s))$

Kv: The DC gain of a type-1 system:

• $K_v = \lim_{s \to 0} (s \cdot G(s))$ or $\lim_{s \to 0} (G(s)) = \frac{K_v}{s}$

Ka: The DC gain of a type-2 system:

• $K_a = \lim_{s \to 0} (s^2 \cdot G(s))$ or $\lim_{s \to 0} (G(s)) = \frac{K_z}{s^2}$

Steady-State Error: The error as $t \rightarrow \infty$ for a unity feedback system

Unit Inputs

Unit Step: $R(s) = \frac{1}{s}$

- Historically modeled trying to point an antiaircraft gun at a German bomber in WWII.
- Models tracking a constant setpoint, (room = 72F, speed = 55mph, etc)

Unit Ramp: $R(s) = \frac{1}{s^2}$

- Historically modeled trying to track a German bomber moving at a constant speed across the sky.
- Models tracking a setpoint which is rising or falling at a constant rate.

Unit Parabola: $R(s) = \frac{1}{s^3}$

- Historically, models German bombers as they fly over you (the angle of the antiaircraft gun whips around at the zenith).
- I'm not sure what this models.

Type-0 Systems:

i) if R(s) is a unit step:

$$E = \left(\frac{1}{K_p + 1}\right) \left(\frac{1}{s}\right) \Longrightarrow e(t) = \left(\frac{1}{K_p + 1}\right)$$

ii) if R(s) is a unit ramp:

$$E(s) = \left(\frac{1}{K_p + 1}\right) \left(\frac{1}{s^2}\right) \Longrightarrow e(t) = \left(\frac{1}{K_p + 1}\right) t$$

error goes to infinity

Type-1 Systems:

i) R = a unit step: $E = \left(\frac{s}{K_v + s}\right) \left(\frac{1}{s}\right) = \left(\frac{0}{s}\right) + \left(\frac{1}{K_v + s}\right)$

e(t) = 0 + transient

ii) R = a unit ramp:

$$E = \left(\frac{s}{K_v + s}\right) \left(\frac{1}{s^2}\right) = \left(\frac{1}{K_v + s}\right) \left(\frac{1}{s}\right) = \left(\frac{1}{K_v}\right) + \left(\frac{c}{s + K_v}\right)$$
$$e(t) = \left(\frac{1}{K_v}\right) + transients$$

iii) R = a unit parabola:

$$E = \left(\frac{s}{K_v + s}\right) \left(\frac{1}{s^3}\right) = \left(\frac{1}{K_v + s}\right) \left(\frac{1}{s^2}\right) = \left(\frac{1}{K_v}\right) + \left(\frac{c}{s}\right) + \left(\frac{d}{s + K_v}\right)$$
$$e = \left(\frac{1}{K_v}\right) t + \dots$$

Example:
$$G(s) = \left(\frac{200}{s(s^2 + 14s + 100)}\right)$$
 $G(s)_{s \to 0} = \frac{2}{s}$ $K_p = \infty$ $K_v = 2$

Type-2 systems:

i) If R is a unit step:

$$E = \left(\frac{1}{1 + \frac{K_a}{s^2}}\right) \frac{1}{s} = \left(\frac{s^2}{s^2 + K_a}\right) \frac{1}{s} = 0 + \left(\frac{c}{s^2 + K_a}\right)$$

e(t) = 0 + (transients)

ii) if R is a unit ramp:

$$E = \left(\frac{s^2}{s^2 + K_a}\right) \frac{1}{s^2} = 0 + \left(\frac{1}{s^2 + K_a}\right)$$

$$e(t) = 0 + (transients)$$

iii) Unit parabola:

$$E = \left(\frac{s^2}{s^2 + K_a}\right) \frac{1}{s^3} = \left(\frac{\frac{1}{K_a}}{s}\right) + \left(\frac{c}{s^2 + K_a}\right)$$
$$e(t) = \left(\frac{1}{K_a}\right) + transients$$

Example:
$$G(s) = \left(\frac{200(s+1)}{s^2(s^2+14s+100)}\right)$$
 $G(s)_{s\to 0} = \frac{2}{s^2} = \frac{K_a}{s^2}$

Handout

Determine the system type, the error constants, and the steady-state error for a step input:

G(s)	System Type	Кр	Kv	Steady-state error for a unit step input
$\left(\frac{200}{(s+3)(s+6)}\right)$				
$\left(\frac{2000}{(s+3+j10)(s+3-j10)(s+20)}\right)$				
$\left(\frac{20}{s(s+3)(s+6)}\right)$				
$\left(\frac{200}{(s-1)(s+5)(s+10)}\right)$				

Summary:

Computation of Error Constants						
	Кр	Kv	Ka			
Туре 0	$\lim_{s\to 0} \left(G(s) \right)$	0	0			
Type 1	œ	$\lim_{s\to 0} \left(s \cdot G(s) \right)$	0			
Type 2	∞	∞	$\lim_{s\to 0} \left(s^2 \cdot G(s) \right)$			

Steady-State Error						
	Unit Step	Unit Ramp	Unit Parabola			
Туре 0	$\left(\frac{1}{K_p+1}\right)$	8	×			
Type 1	0	$\left(\frac{1}{K_{v}}\right)$	8			
Type 2	0	0	$\left(\frac{1}{K_a}\right)$			