Control of a DC Servo Motor

ECE 461/661 Controls Systems Jake Glower - Lecture #25

Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

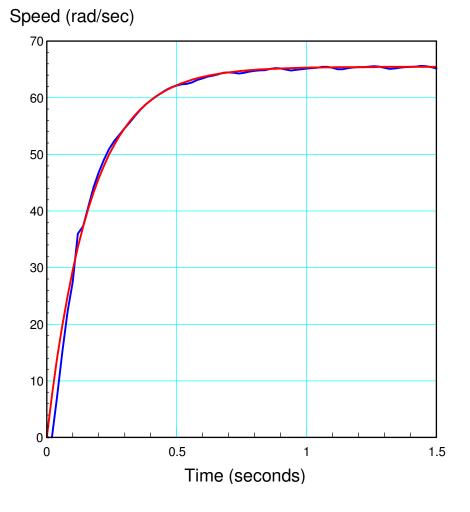
Problem:

- Control the speed of a DC servo motor
- Control the position of a DC servo motor

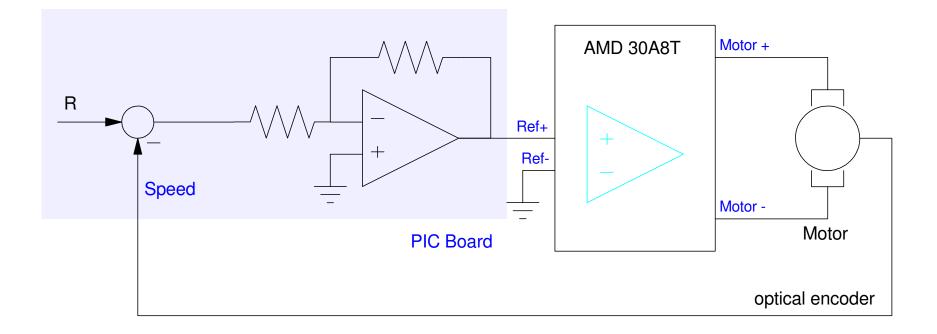
The mathematical model from before:

• Clifton 000-053479-002

$$\boldsymbol{\omega} \approx \left(\frac{39.28}{s+6}\right) V_a$$
$$\boldsymbol{\theta} \approx \left(\frac{39.28}{s(s+6)}\right) V_a$$

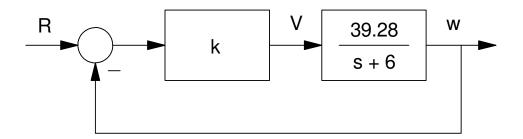


Hardware Setup



Speed Control: Gain Compensation

$$G(s) = \left(\frac{39.28}{s+6}\right)$$
$$K(s) = k$$
$$GK = \left(\frac{39.28k}{s+6}\right)$$



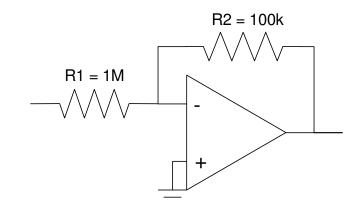
Type-0 Systems

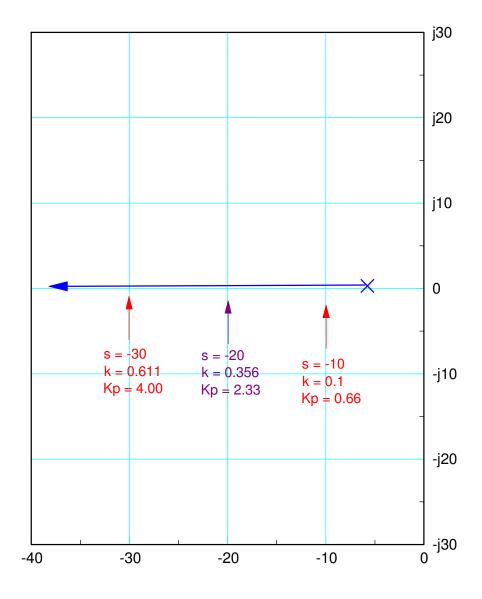
- Kp = 6.547 k
- Steady-State Error for a Step Input

Predicted Response

$$(GK)_{s} = -1$$

 $s = -10$
 $\left(\frac{39.28k}{s+6}\right)_{s=-10} = -1$
 $k = 0.1$
 $K_{p} = (GK)_{s=0} = 0.66$
 $E_{step} = \frac{1}{K_{p}+1} = 0.602$





Experimental Results:

s = -10

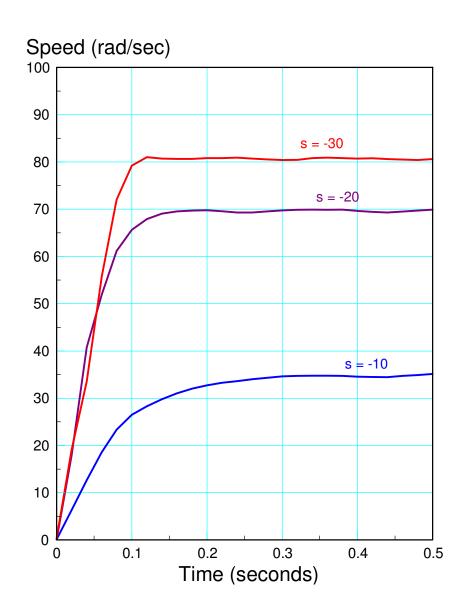
- k = 0.1
- R2 = 100k

$$s = -20$$

- k = 0.356
- R2 = 356k

•
$$k = 0.612$$

• R2 = 611k

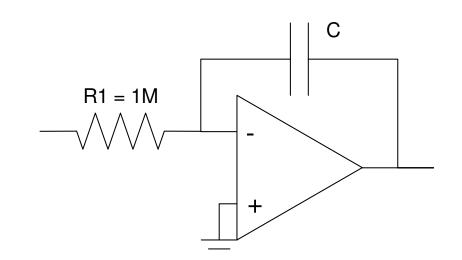


Speed Control: I Compensation

$$K(s) = \left(\frac{k}{s}\right)$$
$$k = \left(\frac{1}{R_1 C}\right)$$
$$GK = \left(\frac{39.68k}{s(s+6)}\right)$$

Type-1 System

• No Error for a Step Input



I Compensation

s = -0.5
•
$$\left(\frac{39.68k}{s(s+6)}\right)_{s=-0.5} = -1$$

• k = 0.070, C = 14.3uF

$$s = -3$$

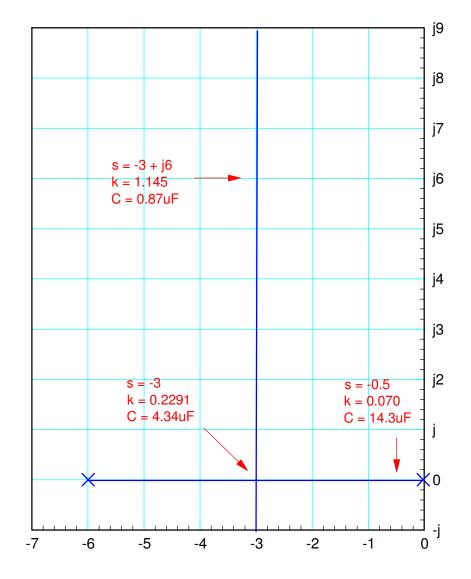
• $\left(\frac{39.68k}{s(s+6)}\right)_{s=-3} = -1$
• $k = 0.2201$ C = 4.34

•
$$k = 0.2291, C = 4.34 uF$$

$$s = -3 + j6$$

• $\left(\frac{39.68k}{s(s+6)}\right)_{s=-3+j6} = -1$

•
$$k = 1.145$$
, $C = 0.87 \mu F$



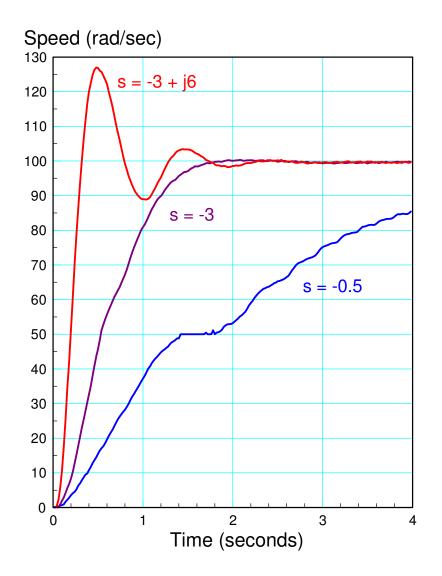
Experimental Results

• I Compensation

Steady-state speed = 100 rad/sec

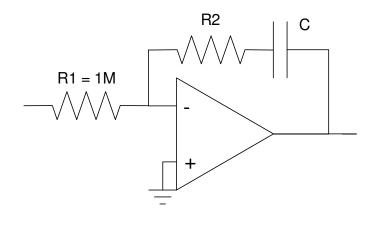
- No Error for a step input
- Type-1 system

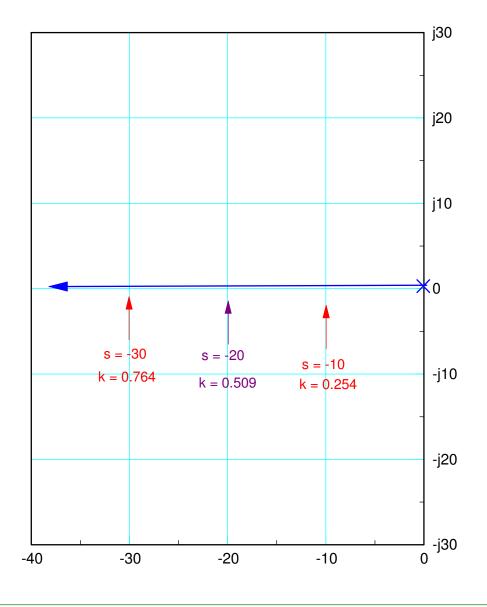
The response is what the root locus plot predicted



Speed Control: PI Control

$$K(s) = k \left(\frac{s+6}{s}\right)$$
$$GK = k \left(\frac{39.28}{s}\right)$$
$$\left(\frac{1}{R_2C}\right) = 6$$
$$k = \left(\frac{R_2}{R_1}\right)$$





PI Control: Experimental Results

s = -10

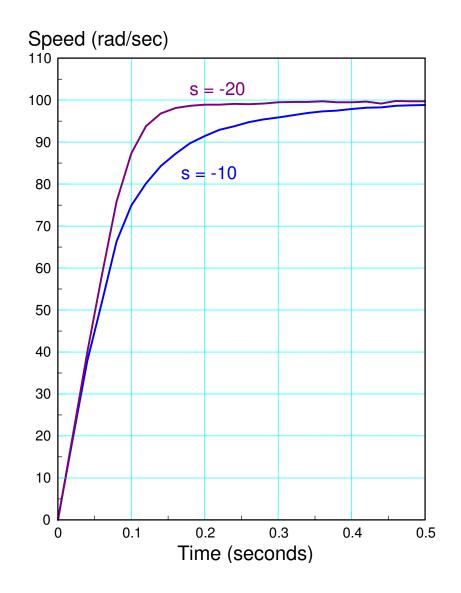
$$K(s) = 0.254 \left(\frac{s+6}{s}\right)$$

• R = 254k, C = 0.656uFs = -20

$$K(s) = 0.509 \left(\frac{s+6}{s}\right)$$

• R = 509k, C = 0.328uFk = 0.509

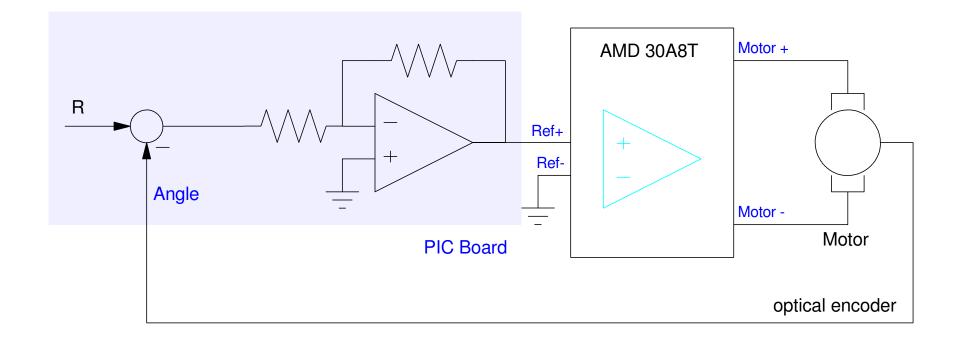
Again, the results are what the root locus plot predicts



Position Control:

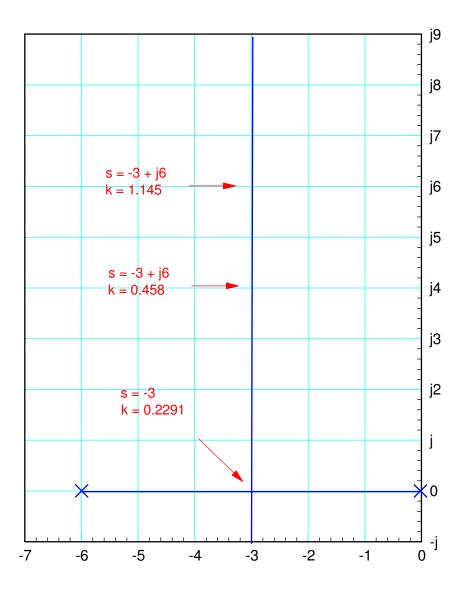
• Change the sensor to an angle sensor and you have position control

$$\mathbf{\Theta} = \left(\frac{39.28}{s(s+6)}\right) V_a$$



Position Control: K(s) = k

s = -3.0 k = 0.2291 s = -3 + j3 k = 0.458 s = -3 + j6k = 1.1456

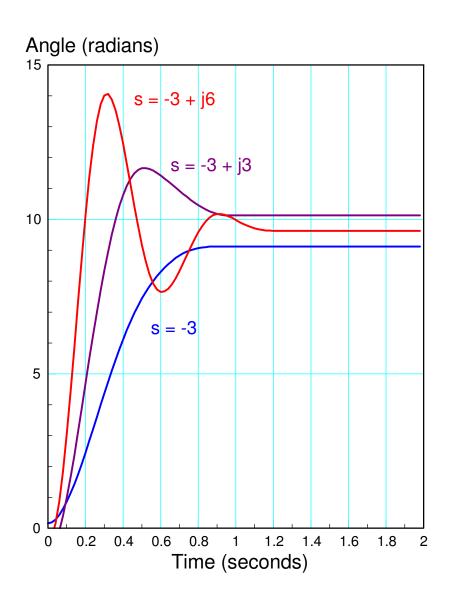


Position Control: K(s) = k

- Experimental Results
- In theory, the steady-state error is zero
 - Type-1 System

In practice, static friction causes a slight error

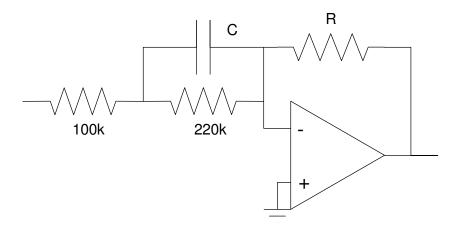
Otherwise, the response is what the root locus plot predicts

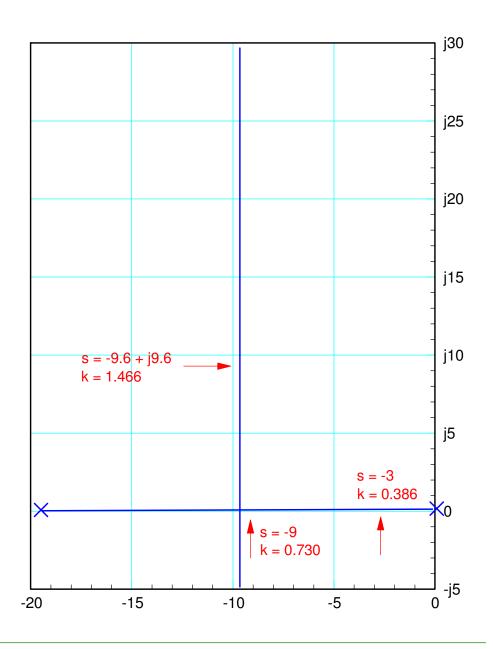


Lead Compensation

- Cancel the pole at -6
- Replace it with a pole at -19.2

$$K(s) = 3.2k \left(\frac{s+6}{s+19.2}\right)$$
$$\left(\frac{1}{220k \cdot C}\right) = 6 \qquad C = 757nF$$

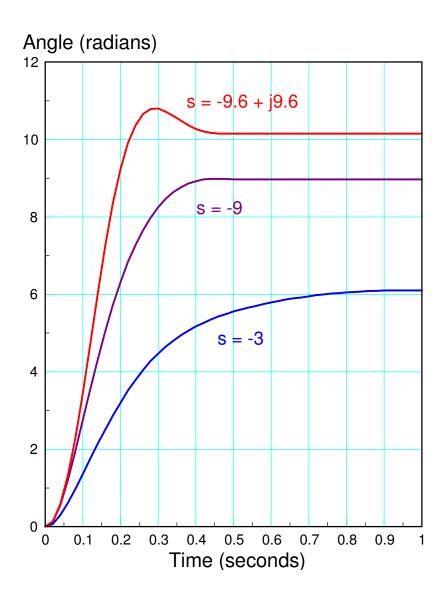




Lead Compensation:

s = -3 • k = 0.386, R = 1.23M s = -9 • k = 0.730, R = 2.336M s = -9.6 + j9.6 • k = 1.466, R = 4.69M

Again, the experimental results are what root locus plots predicted



Summary

Root locus really works

- It predicts how the system will behave as the gain changes
- The response is as the root locus plot predicts