Meeting Design Specs Using Root Locus

ECE 461/661 Controls Systems

Jake Glower - Lecture \#26

Please visit Bison Academy for corresponding
lecture notes, homework sets, and solutions

Lead \& PID Compensators

Lead

- Pull the root locus left, speeding up the system

PID

- Add a pole at $\mathrm{s}=0$ (making Type-0 systems Type-1)
- Add 0,1 , or 2 zeros

In General

- Add a pole at $\mathrm{s}=0$ (if needed) to make the system type- 1
- Add zeros to cancel poles, speeding up the system, and
- Add fast poles so that \#poles $>=$ \# zeros

The resulting $\mathrm{K}(\mathrm{s})$ may not have name per say.

Example: $G(s)=\left(\frac{361.2378}{(s+0.3234)(s+2.081)(s+5.439)(s+10.1)(s+15.65)}\right)$
Find $K(s)$ so that there is...

- No error for a step input,
- A 2% settling time of 4 seconds,
- 20% overshoot for a step input, and
- The high-frequency gain of $K(s)$ is finite

Translating:

- GK is type-1 (or more)
- Closed-loop dominant pole: $\mathrm{s}=-1+\mathrm{j} 2$
- \#poles \geq \#zeros
$G(s)=\left(\frac{361.2378}{(s+0.3234)(s+2.081)(s+5.439)(s+10.1)(s+15.65)}\right)$
Step 1) Add a pole at $\mathrm{s}=0$
- Makes GK type-1

$$
K(s)=\left(\frac{k}{s}\right)
$$

Step 2) Start canceling poles

- Keep going until you're too fast
- The root locus passes left of design point

$$
K(s)=k\left(\frac{(s+0.3234)(s+2.081)}{s}\right)
$$

Step 3) Add a pole (\#poles = \#zeros)

$$
K(s)=k\left(\frac{(s+0.3234)(s+2.081)}{s(s+a)}\right)
$$

Pick 'a' so that $\mathrm{s}=-1+\mathrm{j} 2$ is on the root locus

$$
\begin{aligned}
& G K=\left(\frac{361.2378 k}{s(s+5.439)(s+10.1)(s+15.65)(s+a)}\right)_{s=-1+j 2}=1 \angle 180^{0} \\
& \left(\frac{361.2378}{s(s+5.439)(s+10.1)(s+15.65)}\right)_{s=-1+j 2}=0.2409 \angle-160.99^{0} \\
& \angle(s+a)=19.01^{0} \\
& a=\frac{2}{\tan \left(19.01^{0}\right)}+1=6.8046
\end{aligned}
$$

Step 4: Find k

$$
\begin{aligned}
& K(s)=k\left(\frac{(s+0.3234)(s+2.081)}{s(s+6.8046)}\right) \\
& G K=\left(\frac{361.2378}{s(s+5.439)(s+6.8046)(s+10.1)(s+15.65)}\right)_{s=-1+j 2}
\end{aligned}
$$

$$
G K=0.0392 \angle 180^{\circ}
$$

- 180 degrees: $-1+\mathrm{j} 2$ is on the root locus (good)
- 0.0393: k is off (gain should be 1.000)

$$
k=\frac{1}{0.0392}=25.49
$$

SO

$$
K(s)=25.49\left(\frac{(s+0.3234)(s+2.081)}{s(s+6.8046)}\right)
$$

Check in Matlab:

$G=z p k([],[-0.3234,-2.081,-5.439,-10.1,-15.65], 361.2378)$
361.2378
$(s+0.3234) \quad(s+2.081) \quad(s+5.439) \quad(s+10.1) \quad(s+15.65)$
$K=\operatorname{zpk}([-0.3234,-2.081],[0,-6.8046], 25.49)$
$25.49(s+0.3234)(s+2.081)$
s (s+6.805)
Gcl = minreal (G*K / (1 + G*K))
eig(Gcl)
$-1.0000+2.0000 i$ pole we placed
$-1.0000-2.0000 i$
$-9.7606+4.0657 i$
-9.7606-4.0657i
-16.4724

Circuit Implementation:

Rewrite as

$$
K(s)=\left(5.05 \frac{s+0.3234}{s}\right)\left(5.05 \frac{s+2.081}{s+6.8046}\right)
$$

Example 2:

Let

$$
G(s)=\left(\frac{100}{(s+1)(s+3)(s+5)(s+10)}\right)
$$

Design a compensator so that the closed-loop step response looks like this:

Desired Step Response

Solution:

Step 1: Translate the requirements to root-locus terms.

- The DC gain is one: the system should be type- 1
- The 2% settling time is 2 seconds:
- the real part of the closed-loop dominant pole should be -2
- The overshoot is 12%
- The damping ratio should be $\zeta=0.55$
- The closed-loop dominant pole should be $s=-2+j 3$

Step 2: Find K(s)

- Make the system type-1
- $s=-2+j 3$ is on the root locus

Start with

$$
K(s)=\frac{1}{s}
$$

Start canceling zeros until you're too fast

$$
\begin{aligned}
& K(s)=\left(\frac{(s+1)(s+3)(s+5)}{s(s+a)^{2}}\right) \\
& G K=\left(\frac{100}{s(s+10)}\right)
\end{aligned}
$$

Add two poles so that \#poles = \#zeros

$$
\begin{aligned}
& K(s)=\left(\frac{(s+1)(s+3)(s+5)}{s(s+a)^{2}}\right) \\
& G K=\left(\frac{100}{s(s+a)^{2}(s+10)}\right)
\end{aligned}
$$

Find 'a' so that the angles add up

$$
\begin{aligned}
& \left(\frac{100}{s(s+a)^{2}(s+10)}\right)_{s=-2+j 3}=X \angle 180^{0} \\
& \left(\frac{100}{s(s+10)}\right)_{s=-2+j 3}=3.2461 \angle-144.26^{0} \\
& \angle(s+a)=17.87^{0} \\
& a=\frac{3}{\tan \left(17.87^{0}\right)}+2=11.301
\end{aligned}
$$

This results in

$$
\begin{aligned}
& K(s)=\left(\frac{(s+1)(s+3)(s+5)}{s(s+11.301)^{2}}\right) \\
& G K=\left(\frac{100 k}{s(s+11.301)^{2}(s+10)}\right)
\end{aligned}
$$

Step 3: Find k

$$
\begin{aligned}
& \left(\frac{100}{s(s+11.301)^{2}(s+10)}\right)_{s=-2+j 3}=0.0340 \angle 180^{0} \\
& k=\frac{1}{0.0340}=29.4222 \\
& K(s)=29.4222\left(\frac{(s+1)(s+3)(s+5)}{s(s+1.301)^{2}}\right)
\end{aligned}
$$

and

Validation in Matlab

- Actual vs. Desired Step Response

Gd = zpk([],[-2+j*3,-2-j*3],13);

```
G = zpk([],[-1,-3,-5,-10],100);
K = zpk([-1,-3,-5],[0,-11.301,-11.301],29.4222);
Gcl = minreal(G*K / (1+G*K));
eig(Gcl)
```

$-14.3010+4.6697 i$
-14.3010 - 4.6697i
$-2.0000+3.0000 i$
$-2.0000-3.0000 i$
t = [0:0.01:3]';
yd = step(Gd, t);
y = step (Gcl,t);
plot(t,y,t,yd)

Circuit:

$$
K(s)=29.4222\left(\frac{(s+1)(s+3)(s+5)}{s(s+11.301)^{2}}\right)
$$

Split into three terms:

$$
K(s)=\left(3.087\left(\frac{s+1}{s}\right)\right)\left(3.087\left(\frac{s+3}{s+11.301}\right)\right)\left(3.087\left(\frac{s+5}{s+11.301}\right)\right)
$$

This would then be a PI * Lead * Lead compensator

Handout

Find R and C to implement $\mathrm{K}(\mathrm{s})$

$$
K(s)=\left(\frac{20(s+2)(s+5)}{s(s+10)}\right)
$$

Summary

To design a compensator to meet your design specs...

- Translate the specs to root-locus terms
- Type-1 = no error for a step input
$-\operatorname{real}(\mathrm{s}) \gg 2 \%$ settling time
- angle(s) >> overshoot
- Add a pole at $s=0$ if it's a type- 0 system
- Don't add a second pole at $\mathrm{s}=0$
- Start cancelling (stable) zeros until you're too fast
- Then add poles to force the root locus through your design point
- \#poles = \#zeros for K(s)

