
Unstable Systems and 
Multi-Loop Feedback

ECE 461/661 Controls Systems

Jake Glower - Lecture #28

Please visit Bison Academy for corresponding

 lecture notes, homework sets, and solutions



Pole-Zero Cancellation:

Pole-Zero cancellation just makes the initial condition small

Example:  Find the step response
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Ignoring the pole at s = -1 doesn't change the results significantly



Unstable Poles

This doesn't work with unstable poles
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The unstable term blows up (you can't ignore it)



Result:

You cannot cancel unstable poles

If you miss by the slightest amount, they'll blow up



Design Problem:  

Design a compensator for the following system: 
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that results in 

No error for a step input, and

20% overshoot for a step input

Verify your design with VisSim (or Simulink)



Method #1 ( which won't work) .  
Cancel the pole at s = +1 since it's causing problems.

Add a pole at s = 0 to make the system type-1.

Add a gain of 0.4220 to place the closed-loop poles at s = -0.4031 + j0.8062
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VisSim Result:

Unstable



NASA Result:

Tried many times in the

1950's

Always ended up with an

unstable system



Method #2:  Multi-Loop Feedback.

Force the problem to fit the solution

Add a feedback loop (K1) to stabilize the system

Then worry about meeting the design specs

We know how to design controllers for systems which are open-loop stable
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Design Problem (repeat)

Design a controller for  

G(s) = 
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(s−1)(s+1)(s+5)
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

that results in 

No error for a step input,

20% overshoot for a step input, and

A 2% settling time of 4 seconds.

Verify your design with VisSim.



Step 1:  Stabilize the system

Add a compensator, K1(s), to stabilize the system.

Don't cancel the pole at s = +1:  it's unstable

Cancel the pole at s = -1 instead
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Finding K1(s)
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This results in the closed-loop system being
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Note that this doesn't meet the requirements in any way.  At least it's stable though.
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Step 2:  Add K2(s) to meet the design specs.
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The system should be type-1

The closed-loop dominant pole should be

at s = -1 + j2

To meet this requirement, 

Add a pole at s = 0 to make the system type-1

Cancel the poles at -1 and -2

Add a pole at -a so that -1 + j2 is on the root locus

K2(s) = k
(s+1)(s+2)

s(s+a)



R Y
G2(s)K2(s)

R1



To solve for 'a'
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To find 'k'
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Step 3:  Validation (VisSim works)



Note

It doesn't really matter where you place the poles in Step 1:  you're just going to cancel

them in Step 2.  Likewise, these poles were placed on the real axis at { -1, -2, -11 }.  Real

poles are easier to cancel than complex ones when using an op-amp circuit.

The closed-loop system is stable in spite of the open-loop system being unstable.

Unstable open-loop systems are OK to use - as long as your feedback control law is

working.

No unstable poles were canceled.  The system remains stable if you run it out to 100

seconds.



Implementation:
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