z Transforms

ECE 461/661 Controls Systems Jake Glower - Lecture \#29

Please visit Bison Academy for corresponding
lecture notes, homework sets, and solutions

Hardware vs. Software:

Anything you can do in software you can do in hardware.

- Replace K(s) with a microprocessor, K(z)
- Microprocessor sees a discrete-time system: G(z)

Here, the microcontroller

- Samples the error every T seconds
- Reads the analog world through an A/D
- Executes a program, K(z)
- Outputs data through a D/A

Actual Feedback Control System

The world as seen by the microcontroller

Why use a microcontroller?

- Code that ran yesterday should also run today.
- DC offsets don't exist in software. Zero plus zero is zero.
- If you want a more complex controller, you just add lines of code.
- If you want to change the controller, you just download a new program.

Problem with microcontrollers:

- Easy to implement difference equations, K(z)
- Hard to implement differential equations, i.e. K(s)

Difference Equations

- Difference equations describe software
- We need a tool to handle difference equations

Example: $y(k)=y(k-1)+0.2(x(k)-0.9 x(k-1))$

```
while(1) {
    k = k + 1;
    x1 = x0;
    x0 = A2D_Read(0);
    y1 = y0;
    y0 = y1 + 0.2*(x0 - 0.9*x1);
    Wait_10ms();
    }
```


LaPlace Transforms and Differential Equations

LaPlace transforms assume all functions are in the form of

$$
y=e^{s t}
$$

This turns differentiation into multiplication by 's'

$$
\frac{d y}{d t}=s \cdot e^{s t}=s Y
$$

This turns differential equations into algebraic equations

- Assumes algebra is easier than calculus

LaPlace Transform to Differential Equation

Assume

$$
Y=\left(\frac{8 s+3}{s^{2}+7 s+12}\right) X
$$

then

$$
\left(s^{2}+7 s+12\right) Y=(8 s+3) X
$$

or

$$
\frac{d^{2} y}{d t^{2}}+7 \frac{d y}{d t}+12 y=8 \frac{d x}{d t}+3 x
$$

z-Transform and Difference Equations

Assume all functions are in the form of

$$
y=z^{k}
$$

then
$y(k+1)=z^{k+1}=z \cdot z^{k}=z \cdot y(k)$

- zY means "the next value of Y."
z-Transforms turn difference equations into algebraic equations in z.

Implementing K(z) in Software

- Writing a program to implement $\mathrm{K}(\mathrm{s})$ is hard
- Writing a program to implement $\mathrm{K}(\mathrm{z})$ is easy

Assume

$$
Y=K(z) X=\left(\frac{a_{2} z^{2}+a_{1} z+a_{0}}{z^{3}+b_{2} z^{2}+b_{1} z+b_{0}}\right) X
$$

i) Cross multiply:

$$
\left(z^{3}+b_{2} z^{2}+b_{1} z+b_{0}\right) Y=\left(a_{2} z^{2}+a_{1} z+a_{0}\right) X
$$

ii) Convert back to the time domain, noting that zY means $\mathrm{y}(\mathrm{k}+1)$:

$$
y(k+3)+b_{2} y(k+2)+b_{1} y(k+1)+b_{0} y(k)=a_{2} x(k+2)+a_{1} x(k+1)+a_{0} x(k)
$$

This is the difference equation which relates X and Y .
iii) Time shift so you only use present and past data

$$
y(k)+b_{2} y(k-1)+b_{1} y(k-2)+b_{0} y(k-3)=a_{2} x(k-1)+a_{1} x(k-2)+a_{0} x(k-3)
$$

Solve for $\mathrm{y}(\mathrm{k})$

$$
y(k)=-b_{2} y(k-1)-b_{1} y(k-2)-b_{0} y(k-3)+a_{2} x(k-1)+a_{1} x(k-2)+a_{0} x(k-3)
$$

iv) Write this in code:

```
while(1) {
    x3 = x2; / / x (k-3)
    x2 = x1; // x(k-2)
    x1 = x0; // x(k-1)
    x0 = A2D_Read(0); // read x(k) from the A/D
    y3 = y2; / // y (k-3)
    y2 = y1; 
    y1 = y0; // y (k-1)
    y0 = -b2*y1 - b1*y2 - b0*y3 + a2*x1 + a1*x2 + a0*x3;
    D2A(y0); // output y(k) to the D/A converter
    Wait_10ms();
    }
```

Example 2: Implement the following filter. Assume a sampling rate of 10 ms .

$$
Y=\left(\frac{0.2 z(z-0.9)}{(z-1)(z-0.5)}\right) X
$$

Solution: Multiply it out

$$
Y=\left(\frac{0.2\left(z^{2}-0.9 z\right)}{z^{2}-1.5 z+0.5}\right) X
$$

Cross multiply and solve for the highest power of zY

$$
\begin{aligned}
& \left(z^{2}-1.5 z+0.5\right) Y=0.2\left(z^{2}-0.9 z\right) X \\
& z^{2} Y=\left(1.5 z-0.5 Y+0.2\left(z^{2}-0.9 z\right) X\right. \\
& Y=\left(1.5 z^{-1}-0.5 z^{-2} Y+0.2\left(1-0.9 z^{-1}\right) X\right.
\end{aligned}
$$

meaning

$$
y(k)=1.5 y(k-1)-0.5 y(k-2)+0.2(x(k)-0.9 x(k-1))
$$

In code, only one line changes

$$
y(k)=1.5 y(k-1)-0.5 y(k-2)+0.2(x(k)-0.9 x(k-1))
$$

```
while(1) {
```

```
x2 = x1; / / x(k-2)
x1 = x0; // x(k-1)
x0 = A2D_Read(0); // read in x(k) from the A/D
y2 = y1; // y(k-2)
y1 = y0; // y(k-1)
y0 = 1.5*y1 -0.5*y2 + 0.2*(x0 - 0.9*x1);
```

Wait_10ms();
\}

Note:

- You can implement K(z) exactly
- To change a filter, change one line of code
- Complex poles and zeros are easy to implement
- Code doesn't care if polynomials have real or complex roots
- The order of the filter is how much data you need to remember
- 3rd-order filters use data from 3 samples ago
- 4th-order filters use data from 4 samples ago

Also

- s-domain: Avoid having more zeros than poles
- Results in differentiation
- Amplifies noise
- z-domain: Avoid having more zeros than poles
- Results in non-causal system
- Predicts the future

Also also,

- You must have integer powers of s
$-s^{1} Y$ means "the derivative of Y "
- $s^{0.3} Y$ means "the 0.3 th derivative of Y "
- I don't know what 0.3 derivatives are
- You must have integer powers of z
- $z^{-1} Y$ means "the value of $\mathrm{y}(\mathrm{k})$ the previous time you called the subroutine"
- $z^{-0.3} Y$ means "the value of $\mathrm{y}(\mathrm{k})$ the previous 0.3 time you called the subroutine"

I don't know how to call a subroutine 0.3 times

Handout: Determine the difference equation that relates X and Y

$$
Y=\left(\frac{0.2 z}{(z-0.8)(z-0.6)}\right) X
$$

Relating sand z

LaPlace assumes

$$
y(t)=e^{s t}
$$

Assume

$$
\begin{aligned}
& t=k T \\
& y(k T)=e^{s k T}=\left(e^{s t}\right)^{k}=z^{k} \\
& y(k)=z^{k}
\end{aligned}
$$

This is the assumption behind z-Transforms, implying

$$
z=e^{s T}
$$

Phasor analysis for G(s)

Find $y(t)$

$$
Y=\left(\frac{20}{(s+1)(s+5)}\right) X \quad x(t)=3 \sin (4 t)
$$

Express in phasor form

$$
\begin{aligned}
& X=0-j 3 \\
& s=j 4
\end{aligned}
$$

Output $=$ Gain * Input

$$
Y=\left(\frac{20}{(s+1)(s+5)}\right)_{s=j 4}(0-j 3)=-2.3816+j 0.2582
$$

meaning

$$
y(t)=-2.3816 \cos (4 t)-0.2582 \sin (4 t)
$$

Phasor Analysis for G(z)

Find $y(t)$.

$$
Y=\left(\frac{0.02 z}{(z-0.9)(z-0.8)}\right) X \quad x(t)=3 \sin (4 t) \quad \mathrm{T}=10 \mathrm{~ms}
$$

Solution: Convert to phasors

$$
\begin{aligned}
& X=0-j 3 \\
& s=j 4 \\
& z=e^{s T}=e^{j 0.04}=1 \angle 2.291^{0} \\
& Y=\left(\frac{0.02 z}{(z-0.9)(z-0.8)}\right)_{z=1 \angle 2.291^{0}}(0-j 3)=-1.4226-j 2.3663
\end{aligned}
$$

meaning

$$
y(t)=-1.4226 \cos (4 t)+2.3663 \sin (4 t)
$$

It isn't obvious, but $G(z)$ is a filter

- Gain varies with frequency

Handout: Determine $y(t)$

$$
\begin{aligned}
& Y=\left(\frac{0.2 z}{(z-0.8)(z-0.6)}\right) X \\
& x(t)=3 \cos (4 t) \\
& T=0.1
\end{aligned}
$$

z-Transforms for various functions

i) Delta Function $\delta(k)$. The discrete-time delta function is

$$
\left.\begin{array}{rl}
\delta(k) & =\left\{\begin{array}{cc}
1 & k=0 \\
0 & \text { otherwise }
\end{array}\right. \\
& \begin{array}{ccccccccc}
\\
& \mathrm{k} & 0 & 1 & 2 & 3 & 4 & 5 & 6
\end{array} \\
\hline \text { delta(k) } & 1
\end{array} 0 \begin{array}{llllll}
\\
\hline
\end{array}\right]
$$

The z-transform of a delta function is ' 1 ', just like the s-domain.

Unit Step: The unit step is

$$
u(k)=\left\{\begin{array}{cc}
1 & k \geq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

It's z-transform can be derives as follows. The unit step is:

k	0	1	2	3	4	5	6	7
$u(k)$	1	1	1	1	1	1	1	1
$(1 / z)^{*} u(k)$	0	1	1	1	1	1	1	1
Subtract								
$(1-1 / z) u(k)$	1	0	0	0	0	0	0	0

So,

$$
\begin{aligned}
& \left(1-\frac{1}{z}\right) u(k)=1 \\
& \left(\frac{z-1}{z}\right) u(k)=1 \\
& u(k)=\frac{z}{z-1}
\end{aligned}
$$

iii) Decaying Exponential. Let

$$
\begin{array}{cccccccccc}
x(k)=a^{k} u(k) & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline \begin{array}{c}
\mathrm{k}
\end{array} & 1 & \mathrm{a} & \mathrm{a}^{2} & \mathrm{a}^{3} & \mathrm{a}^{4} & \mathrm{a}^{5} & \mathrm{a}^{6} & \mathrm{a}^{7} \\
& \begin{array}{c}
\mathrm{x}(\mathrm{k}) \\
\mathrm{a}^{*}(1 / \mathrm{z})^{*} \mathrm{x}
\end{array} & 0 & \mathrm{a} & \mathrm{a}^{2} & \mathrm{a}^{3} & \mathrm{a}^{4} & \mathrm{a}^{5} & \mathrm{a}^{6} & \mathrm{a}^{7} \\
\hline \begin{array}{c}
\text { Subtract } \\
(1-\mathrm{a} / \mathrm{z}) \mathrm{x}
\end{array} & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

SO

$$
\begin{aligned}
& \left(1-\frac{a}{z}\right) X=1 \\
& \left(\frac{z-a}{z}\right) X=1 \\
& X=\left(\frac{z}{z-a}\right)
\end{aligned}
$$

Table of z -Transforms

These let you create a table of z-transforms like we had in the s-domain:

function	$\mathrm{y}(\mathrm{k})$	$\mathrm{Y}(\mathrm{z})$
delta	$\delta(k)$	$\frac{z}{z-1}$
unit step	$u(k)$	$\frac{z}{z-a}$
decaying exponential	$a^{k} u(k)$	$\left(\frac{(b \angle \phi) z}{z-(a \angle \theta)}\right)+\left(\frac{(b \angle-\phi) z}{z-(a \angle-\theta)}\right)$
damped sinewave	$2 b \cdot a^{k} \cdot \cos (k \theta+\phi)$	

Example: Real Poles

Find the step response of

$$
Y=\left(\frac{0.2 z}{(z-0.9)(z-0.5)}\right)\left(\frac{z}{z-1}\right)
$$

Use partial fractions

$$
\begin{aligned}
& Y=\left(\frac{0.2 z}{(z-1)(z-0.9)(z-0.5)}\right) z=\left(\left(\frac{4}{z-1}\right)+\left(\frac{-4.5}{z-0.9}\right)+\left(\frac{0.5}{z-0.5}\right)\right) z \\
& Y=\left(\left(\frac{4 z}{z-1}\right)+\left(\frac{-4.5 z}{z-0.9}\right)+\left(\frac{0.5 z}{z-0.5}\right)\right)
\end{aligned}
$$

Use the table

$$
y(k)=4-4.5 \cdot(0.9)^{k}+0.5 \cdot(0.5)^{k} \quad \mathrm{k}>=0
$$

Example: Complex Poles

Find y(k)

$$
Y=\left(\frac{0.2 z}{\left(z-0.9 \angle 10^{0}\right)\left(z-0.9 \angle-10^{0}\right)}\right)\left(\frac{z}{z-1}\right)
$$

Pull out a z:

$$
Y=\left(\frac{0.2 z}{(z-1)\left(z-0.9 \angle 10^{0}\right)\left(z-0.9 \angle-10^{0}\right)}\right) z
$$

Expand using partial fractions

$$
Y=\left(\left(\frac{5.355}{z-1}\right)+\left(\frac{2.98 \angle 153.97^{0}}{z-0.9 \angle 10^{0}}\right)+\left(\frac{2.98 \angle-153.97^{0}}{z-0.9 \angle-10^{0}}\right)\right) z
$$

Convert back to time using the table of z-transforms

$$
y(k)=5.355+4.859 \cdot(0.9)^{k} \cdot \cos \left(10^{0} \cdot k-153.97^{0}\right) \quad \mathrm{k}>=0
$$

Notes:

s-Plane: Rectangular works best

- The real part of s tells you the rate at which the exponential decays
- The complex part of s tells you the frequency of oscillations.
z-plane: Polar works best
- The amplitude of z tells you the rate at which the signal decays
- The angle of z tells you the frequency of oscillation.

In this case,

- The signal decays by 10% each sample $(0.9)^{\mathrm{k}}$
- The phase changes by 10 degrees each sample

36 samples per cycle

Handout: Assume $\mathrm{x}(\mathrm{k})=\mathrm{u}(\mathrm{k})$ (unit step). Find $\mathrm{y}(\mathrm{k})$

$$
Y=\left(\frac{0.2 z}{(z-0.8)(z-0.6)}\right) X
$$

Sidelight: Time Value of Money

Borrow \$100,000 @ 6\% interest (0.5% per month).

- What are the monthly payments?
- This is what business calculators compute
- Constant monthly payments starting at month \#1 (vs. month \#0)
$\mathrm{x}(\mathrm{k})=$ loan value at month k

$$
x(k+1)=1.005 x(k)-p \cdot u(k-1)+X(0) \cdot \delta(k)
$$

z-Transform

$$
\begin{aligned}
& z X=1.005 X-p\left(\frac{1}{z-1}\right)+X(0) \\
& (z-1.005) X=-p\left(\frac{1}{z-1}\right)+X(0)
\end{aligned}
$$

Solve for X

$$
\begin{aligned}
& (z-1.005) X=-p\left(\frac{1}{z-1}\right)+X(0) \\
& X=\left(\frac{X(0)}{z-1.005}\right)-p\left(\frac{1}{(z-1)(z-1.005)}\right)
\end{aligned}
$$

Do partial fractions

$$
X=\left(\frac{X(0)}{z-1.005}\right)+p\left(\left(\frac{200}{z-1}\right)-\left(\frac{200}{z-1.005}\right)\right)
$$

Multiply by z so it's in our table of z -transforms

$$
z X=\left(\frac{X(0) z}{z-1.005}\right)+p\left(\left(\frac{200 z}{z-1}\right)-\left(\frac{200 z}{z-1.005}\right)\right)
$$

Take the inverse z -transform

$$
\begin{aligned}
& z X=\left(\frac{x(0) z}{z-1.005}\right)+p\left(\left(\frac{200 z}{z-1}\right)-\left(\frac{200 z}{z-1.005}\right)\right) \\
& z x(k)=\left(1.005^{k} \cdot X(0)+200 p\left(1-1.005^{k}\right)\right) u(k)
\end{aligned}
$$

Divide by z (delay by one)

$$
x(k)=\left(1.005^{k-1} \cdot X(0)+200 p\left(1-1.005^{k-1}\right)\right) u(k-1)
$$

After 10 years ($\mathrm{k}=120$ payments), the loan is zero

$$
x(120)=0=\$ 181,034.50-162.069 p
$$

$$
p=\$ 1117.02
$$

Summary:

LaPlace transforms convert differential equations into algebraic equations in 's'

- Makes solving differential equations much easier
z-Transforms convert difference equations into algebraic equations in 'z'
- Makes solving difference equations much easier

The same procedures used with LaPlace transforms also work with z-transforms

- You just use a slightly different table when converting back to time

