Converting G(s) to G(z)
 ECE 461/661 Controls Systems Jake Glower - Lecture \#30

Please visit Bison Academy for corresponding
lecture notes, homework sets, and solutions

Digital Control Systems

Often times, the compensator, K(s), will be implemented with a microcontroller.

- The result is a hybrid system: both analog and discrete

Makes analysis difficult
Relative to the microcontroller, the world looks discrete:

- You output a control signal every T seconds,
- Through the system dynamics, this results in an error, sampled every T seconds as well.
- Convert everything to the z -domain

Now you can analyze the closed-loop system

Converting $\mathbf{G}(\mathbf{s})$ to $\mathbf{G}(\mathbf{z})$

Method 1: Substitution

- sY means the derivative of Y

Euler - Backward Difference

$$
S \approx\left(\frac{z-1}{T}\right)
$$

Euler - Forward Difference:

$$
S \approx\left(\frac{z-1}{T z}\right)
$$

Bilinear

$$
S \approx \frac{2}{T}\left(\frac{z-1}{z+1}\right)
$$

Example: Find the z-transform of $\mathrm{G}(\mathrm{s})$

- Assume a sampling rate of $100 \mathrm{~ms}(\mathrm{~T}=0.1)$.

$$
G(s)=\left(\frac{100}{(s+1)(s+3)(s+10)}\right)
$$

a) Using Euler Forward Difference:

$$
\begin{aligned}
& G(s)=\left(\frac{100}{(s+1)(s+3)(s+10)}\right) \\
& G(z) \approx\left(\frac{100}{\left(\left(\frac{z-1}{T z}\right)+1\right)\left(\left(\frac{z-1}{T_{z}}\right)+3\right)\left(\left(\frac{z-1}{T_{z}}\right)+10\right)}\right) \\
& G(z)=\left(\frac{0.03497 z^{3}}{(z-0.9091)(z-0.7692)(z-0.5)}\right)
\end{aligned}
$$

In Matlab: Input the system in the s-plane

```
Gs = zpk([],[-1,-3,-10],100)
```

100
$(s+1)(s+3)(s+10)$
If you add one more term, Matlab interprets this as a discrete-time system with the last term being the sampling rate:

```
Gz = zpk([0,0,0],[0.9091,0.7692,0.5],0.03497,0.1)
0.03497 z^3
(z-0.9091) (z-0.7692) (z-0.5)
Sampling time (seconds): 0.1
```

To plot the step response of the two systems together

- Plot the step response of $G(z)$
- Type hold on to keep this plot
- Plot the step response of $G(s)$ on top of the $G(z)$ graph

```
step(Gz)
t = [0:0.01:8]';
ys = step(Gs,t);
hold on
plot(t,ys,'r')
```


Bilinear:

$$
\begin{aligned}
& G(s)=\left(\frac{100}{(s+1)(s+3)(s+10)}\right) \\
& G(z) \approx\left(\frac{100}{\left(\frac{2}{I}\left(\frac{z-1}{z+1}\right)+1\right)\left(\frac{2}{\tau}\left(\frac{z-1}{z+1}\right)+3\right)\left(\frac{2}{\overline{(}}\left(\frac{z-1}{z+1}\right)+10\right)}\right) \\
& G(z) \approx\left(\frac{0.0069(z+1)^{3}}{(z-0.9047)(z-0.7391)(z-0.3333)}\right)
\end{aligned}
$$

Method \#2: Transform Poles and Zeros (my preference)

LaPlace transforms assume

$$
y=e^{s t}
$$

z-transforms assume

$$
y=z^{k}
$$

Assume

$$
\begin{aligned}
& t=k T \\
& y=e^{s(k T)}=e^{(s T) k}=\left(e^{s T}\right)^{k}=z^{k}
\end{aligned}
$$

The conversion from the s-plane to the z-plane is
$z=e^{s T}$

Procedure:

i) Convert every pole and zero as

$$
z=e^{s T}
$$

ii) Add a gain to match the DC gain
iii) (optional) Add n zeros at $\mathrm{z}=0$ to match the phase at a frequency close to zero

- or -

Add n zeros at $\mathrm{z}=0$ to match the delay in the system.

Example: $\mathrm{G}(\mathrm{z})$. Assume $\mathrm{T}=0.1$

$$
G(s)=\left(\frac{100}{(s+1)(s+3)(s+10)}\right)
$$

In Matlab

```
\(s=[-1,-3,-10]\)
    \(\begin{array}{lll}-1.00 & -3.00 & -10.00\end{array}\)
\(\mathrm{T}=0.1\);
\(z=\exp \left(s^{*} T\right)\)
    \(0.9048374 \quad 0.7408182 \quad 0.3678794\)
```


Meaning

$$
G(z)=\left(\frac{k}{(z-0.9048)(z-0.7408)(z-0.3687)}\right)
$$

Match the DC gain

$$
\begin{aligned}
& \left(\frac{100}{(s+1)(s+3)(s+10)}\right)_{s=0}=3.3333 \\
& \left(\frac{k}{(z-0.9048)(z-0.7408)(z-0.3687)}\right)_{z=1}=3.33333 \\
& k=\operatorname{prod}(1-z) * 3.3333 \\
& \quad 0.0591691
\end{aligned}
$$

meaning

$$
G(z)=\left(\frac{0.059169}{(z-0.9048)(z-0.7408)(z-0.3687)}\right)
$$

To find how many zeros belong at $\mathrm{z}=0$,
a) There is too much delay with this system. Adjust by adding zeros at $\mathrm{z}=0$
b) Match the phase at some frequency, such as $\mathrm{s}=\mathrm{j} 1$

$$
\begin{aligned}
& \left(\frac{100}{(s+1)(s+3)(s+10)}\right)_{s=j 1}=2.2249 \angle-69.14^{0} \\
& \left(\frac{0.051969}{(z-0.9048)(z-0.7408)(z-0.3687)}\right)_{s=j}=2.2276 \angle-78.04^{0} \\
& z=e^{s T}=e^{(j 1)(0.1)}=1 \angle 5.73^{0}
\end{aligned}
$$

Add 1.55 zeros at $\mathrm{z}=0$ to make the phase match

- Round up to 2 or round down to 1

$$
G(z) \approx\left(\frac{0.051969 \cdot z}{(z-0.9048)(z-0.7408)(z-0.3687)}\right)
$$

In Matlab: Input the system G(s)

$G s=\operatorname{zpk}([],[-1,-3,-10], 100)$
100
$(s+1)(s+3)(s+10)$

Input $\mathrm{G}(\mathrm{z})$. For now, assume the numerator is 1
$\mathrm{T}=0.1$;
$\mathrm{Gz}=\operatorname{zpk}([],[\exp (-1 * T), \exp (-3 * T), \exp (-10 * T)], 1, T)$ 1
($z-0.9048)(z-0.7408)(z-0.3679)$
Sampling time (seconds): 0.1

Add a gain, k , so that the DC gain matches up

```
DCs = evalfr(Gs,0)
    3.3333
DCz = evalfr(Gz,1)
    64.1401
k = DCs / DCz
    0.0520
```

So, $G(z)$ is.

```
Gz = zpk([],[exp(-1*T),exp(-3*T), exp(-10*T)],k,T)
    0.05197
(z-0.9048) (z-0.7408) (z-0.3679)
```

Sampling time (seconds): 0.1

Checking the answer: Plot the step response of $\mathrm{G}(\mathrm{z})$ and $\mathrm{G}(\mathrm{s})$

- Add zeros at $\mathrm{z}=0$ to remove the time delay

```
step(Gz)
hold on
t = [0:0.001:8]';
ys = step(Gs,t);
plot(t,ys,'r');
```


Example 2: Complex Poles

This also works with complex poles and zeros

$$
\begin{aligned}
& G(s)=\left(\frac{100(s+j 5)(s-j 5)}{(s+1+j 4)(s+1-j 4)(s+20)}\right) \\
& \begin{array}{l}
\text { sn }=[j \star 5,-j \star 5] ' \\
\mathrm{~T}= \\
\mathrm{zn}= \\
=\exp (\text { sns*T) } \\
\\
\\
0.8775826-0.4794255 i \\
\\
0.8775826+0.4794255 i
\end{array}
\end{aligned}
$$

poly(nz)

1. - $1.7551651 \quad 1$.
sd $=[-1+j * 4,-1-j * 4,-20] '$

- 1. - 4.i
- 1. + 4.i
- 20.

$$
\begin{aligned}
\mathrm{zd}= & \exp (\mathrm{sd*} \mathrm{~T}) \\
& 0.8334105-0.3523603 i \\
& 0.8334105+0.3523603 i \\
& 0.1353353
\end{aligned}
$$

poly (zd)

$$
\text { 1. - } 1.8021562 \quad 1.0443104-0.1108032
$$

meaning

$$
G(z)=k\left(\frac{z^{2}-1.755 z+1}{z^{3}-1.802 z^{2}+1.044 z-0.110}\right)
$$

To find k , match the DC gain:

```
DC = 100*25/340
    7.3529412
k = DC* prod(1-zd)/prod(1-zn)
    3.9447681
```

$$
G(z)=3.944\left(\frac{z^{2}-1.755 z+1}{z^{3}-1.802 z^{2}+1.044 z-0.110}\right)
$$

In Matlab: Input the system G(s)

```
z1 = j*5;
z2 = -j*5;
p1 = -1+j*4;
p2 = -1-j*4;
p3 = -2;
Gs = zpk([z1,z2],[p1,p2,p3],100)
    100 (s^2 + 25)
(s+2) (s^2 + 2s + 17)
```

Now input $\mathrm{G}(\mathrm{z})$. Convert the poles and zeros to the z -plane as e^{sT}.

```
T = 0.1;
Gz = zpk([exp (z1*T), exp(z2*T)],[exp (p1*T), exp (p2*T), exp (p3*T)],1,T)
    (z^2 - 1.755z + 1)
(z-0.8187) (z^2 - 1.667z + 0.8187)
Sampling time (seconds): 0.1
```

Add a gain, k , to make the DC gains match up:

```
DCs = evalfr(Gs,0)
    73.5294
DCz = evalfr(Gz,1)
    8.8913
k = DCs / DCz
    8.2699
```

So, the discrete-time model for $G(s)$ is....

```
Gz = zpk([exp(z1*T), exp(z2*T)],[exp(p1*T), exp (p2*T), exp (p3*T)],k,T)
    8.2699 (z^2 - 1.755z + 1)
(z-0.8187) (z^2 - 1.667z + 0.8187)
Sampling time (seconds): 0.1
```

Check the result by plotting the step response of $\mathrm{G}(\mathrm{s})$ and $\mathrm{G}(\mathrm{z})$ on the same graph:

```
step(Gz)
hold on
t = [0:0.001:5]';
ys}= step(Gs,t)
plot(t,ys,'r');
```


Handout: Determine the discrete-time equivalent of $\mathrm{G}(\mathrm{s})$. Assume $\mathrm{T}=0.1$ seconds

$$
G(s)=\left(\frac{20}{(s+2)(s+5)}\right)
$$

Handout: Determine the continuous-time equivalent of $\mathrm{G}(\mathrm{z})$. Assume $\mathrm{T}=0.1$ second

$$
G(z)=\left(\frac{0.2 z}{(z-0.8)(z-0.6)}\right)
$$

Note: Changing the Sampling Rate:

$$
z=e^{s T}
$$

If you change the sampling rate, $G(z)$ changes
and all of your analysis on $G(z)$ becomes worthless

$$
G(s)=\left(\frac{100}{(s+1)(s+3)(s+10)}\right)
$$

At $T=0.1$

$$
G(z) \approx\left(\frac{0.051969 \cdot z}{(z-0.9048)(z-0.7408)(z-0.3687)}\right)
$$

$$
\begin{aligned}
& \text { At } \mathrm{T}=0.01 \\
& \qquad G(z) \approx\left(\frac{0.00009393 \cdot z}{(z-0.9900)(z-0.9704)(z-0.9048)}\right)
\end{aligned}
$$

Note 2: Frequency Response of $\mathbf{G}(\mathbf{z})$

If $G(\mathrm{~s})$ and $\mathrm{G}(\mathrm{z})$ are the same system

- They have the step response
- They have the same frequency response

```
w = [0:0.01:30]';
s = j*w;
Gs = 100 ./ ( (s+1) .* (s+3) .* (s+10) );
T = 0.1;
z = exp(s*T);
Gz = 0.051969*z ./ ( (z-0.9048) .* (z-0.7408) .* (z-0.3687) );
T = 0.01;
z = exp(s*T);
Gz2 = 0.000093938*z ./ ( (z-0.9900).*(z-0.9704).*(z-0.9048) );
plot(w,abs(Gs),w,abs(Gz),w,abs(Gz2));
xlabel('Frequency (rad/sec');
ylabel('Gain');
xgrid(4)
```


Gain of $G(s)$ (blue), $G(z)$ with $T=0.1$ (green), and $G(z)$ with $T=0.01$ (red)

Summary

There are several ways to convert from $G(s)$ to $G(z)$

- Substitution:

Replace ' $1 / s$ ' with a numerical approximation for integration

- Mapping:

Map the poles and zeros to the z-plane as $z=e^{s T}$
Then match the DC gain

Either method works. As a check

- Both $G(s)$ and $G(z)$ should have similar step responses
- Both $G(s)$ and $G(z)$ should have similar frequency responses

Time and frequency are related. If one matches, the other will too.

