Root Locus in the z-Domain

ECE 461/661 Controls Systems

Jake Glower - Lecture \#31

Please visit Bison Academy for corresponding
lecture notes, homework sets, and solutions

Root Locus in the z-Domain

Goal: Find $\mathrm{K}(\mathrm{z})$ for a "good" response
Note: Relative to the microcontroller

- The feedback system looks like it's a discrete-time system.
- It looks like it's in the z-domain.

Mathematically, the open-loop transfer function is

$$
H(s) G(s) K(z)
$$

- H(s) Sample and Hold
- G(s) Analog Plant
- K(z) Digital Controller
$\mathrm{H}(\mathrm{s})$ looks like a $1 / 2$ sample delay

$$
H(s) \approx \exp \left(-\frac{s T}{2}\right)
$$

Lump $\mathrm{H}(\mathrm{s})$ and $\mathrm{G}(\mathrm{s})$ together

$$
H(s) G(s) \Rightarrow G(z)
$$

The closed-loop system is

$$
Y=\left(\frac{G K}{1+G K}\right) R
$$

If GK has zeros and poles:

$$
G K=k \frac{z}{\bar{z}}
$$

the closed-loop transfer function becomes

$$
Y=\left(\frac{k z}{p+k z}\right) E
$$

The roots of the closed-loop system are:

$$
p(z)+k z(z)=0
$$

Note: This is identical to the s-plane

$$
p(s)+k z(s)=0
$$

Root Locus in the z-plane

- Exactly the same as the s-plane
- The only difference is how to interprit the results: $z=e^{s T}$

2\% Settling Time:

- Determined by the magnitude of the poles

$$
\begin{aligned}
& z^{k}=0.02 \\
& k=\frac{\ln (0.02)}{\ln (z)}
\end{aligned}
$$

A pole at $\mathrm{z}=0.95$ has a 2% settling time of 73 samples (round up) $k=\frac{\ln (0.02)}{\ln (0.95)}=72.26$ samples

A pole at $\mathrm{z}=0.8$ has a 2% settling time of 18 samples

$$
k=\frac{\ln (0.02)}{\ln (0.8)}=17.53 \text { samples }
$$

Similarly, for any pole, the amplitude tells you the settling time as

$$
|z|^{k}=0.02 \quad k=\frac{\ln (0.02)}{\ln (|z|)}
$$

Step Response: Pole at $\{0.95$ (red), 0.9 (blue), 0.8 (green), and 0.7 (pink). $T=0.01$ second

Frequency of Oscillation:

- Determined by the angle of the poles period $=\frac{360^{\circ}}{\text { angle }}$ samples

Poles at

$$
\begin{array}{ll}
0.95 \angle \pm 9^{0} & \text { Period }=40 \text { samples } \\
0.95 \angle \pm 18^{0} & \text { Period }=20 \text { samples }
\end{array}
$$

Overshoot (Damping Ratio)

- Follows a log spiral
- Convert to the s-plane to find the damping ratio

Damping Ratio	s-plane	z-plane
0	$-1 \angle \pm 90^{0}$	$0.9950+j 0.0998$
0.2	$-1 \angle \pm 78.46^{0}$	$0.9755+j 0.0959$
0.4	$-1 \angle \pm 66.42^{0}$	$0.9568+\mathrm{j} 0.0879$
0.6	$-1 \angle \pm 53.13^{0}$	$0.9388+\mathrm{j} 0.0753$
0.8	$-1 \angle \pm 36.86^{0}$	$0.9214+\mathrm{j} 0.0553$
1	$-1 \angle \pm 0^{0}$	$0.9048+\mathrm{j} 0$

Gain Compensation in the z-Plane

Assume

$$
G(s)=\left(\frac{1000}{(s+5)(s+10)(s+20)}\right)
$$

Find $K(z)=k$

- $\mathrm{T}=10 \mathrm{~ms}$
- No overshoot,
- 20% overshoot, and
- The maximum gain for stability.

Step 1: Convert G(s) to G(z).

$$
G(s)=\left(\frac{1000}{(s+5)(s+10)(s+20)}\right)
$$

With $\mathrm{T}=0.01$ second

$$
G(z) \approx\left(\frac{0.0008413 z}{(z-0.9512)(z-0.9048)(z-0.8187)}\right)
$$

Step 2: Draw the root locus of $\mathrm{G}(\mathrm{z})$

- Add the damping line

```
T = 0.01;
Gz = zpk(0, [0.9512, 0.9048, 0.8187],
0.0008413);
k = logspace(-2,2,1000)';
R = rlocus(G,k);
% draw the damping lines on this graph
hold on
s = [0:0.01:100] * (-1+j*2);
z = exp(s*T);
plot(real(z),imag(z),'r')
s = [0:0.01:100] * (j*1);
z = exp(s*T);
plot(real(z),imag(z),'r')
```


Step 3: Pick a spot on the root locus

a) No overshoot.

- This is the breakaway point

$$
\mathrm{z}=0.9305
$$

At this point

$$
\begin{aligned}
& \left(\frac{0.0008413 z}{(z-0.9512)(z-0.9048)(z-0.8187)}\right)_{z=0.9305}=13.1620 \angle 180^{0} \\
& K=\frac{1}{13.1620}=0.0760
\end{aligned}
$$

This results in

$$
\begin{aligned}
& t_{2 \%}=\frac{\ln (0.02)}{\ln (0.9305)}=54.3 \text { samples } \quad(0.543 \text { seconds }) \\
& \mathrm{Kp}=0.0760
\end{aligned}
$$

Step Response with $\mathrm{K}(\mathrm{z})$ chosen to place the poles at the breakaway point (no overshoot).
b) $\mathbf{2 0 \%}$ overshoot.
$z=0.9513+j 0.0873$
At this point
$\left(\frac{0.0008413 z}{(z-0.9512)(z-0.9048)(z-0.8187)}\right)_{z=0.9513+j 0.0873}=0.5867 \angle 180^{0}$
$\mathrm{K}(\mathrm{z})$ is then

$$
K=\frac{1}{0.5867}=1.7044
$$

This results in

$$
\begin{aligned}
& t_{2 \%}=\frac{\ln (0.02)}{\ln (|0.9513+j 0.0873|)}=85.52 \text { samples } \\
& \mathrm{Kp}=1.7044
\end{aligned}
$$

Step Response with $\mathrm{K}(\mathrm{z})$ chosen for 20% overshoot
c) Max Gain for Stability (the jw crossing).

$$
\mathrm{z}=0.9850+\mathrm{j} 0.1723
$$

At this point

$$
\left(\frac{0.0008413 z}{(z-0.9512)(z-0.9048)(z-0.8187)}\right)_{z=0.9850+j 0.1723}=0.1053 \angle 180^{0}
$$

meaning

$$
K(z)=\frac{1}{0.1053}=9.5008
$$

The frequency of oscillation is

$$
\begin{aligned}
& \angle z=9.9215^{0} \\
& \text { period }=\frac{360^{0}}{9.9211^{0}}=36 \\
& =0.3628 \text { seconds } \\
& f=\frac{1}{\text { period }}=2.75 \mathrm{~Hz}
\end{aligned}
$$

$$
\text { period }=\frac{360^{\circ}}{9.9215^{0}}=36.28 \text { samples }
$$

Alternate Method:

Find the spot on the damping line where the angles add up to 180 degrees

$$
G \cdot K=1 \angle 180^{\circ}
$$

When you have a digital compensator, you really have three terms:
$\mathrm{G}(\mathrm{s}) * \mathrm{~K}(\mathrm{z}) *$ sample and hold

Matlab can analyze each of these

- You don't have to do s to z conversions

Modeling the Sample \& Hold

- Sample and hold adds a $1 / 2$ sample delay
$H(s) \approx \exp \left(\frac{-s T}{2}\right)$

3 Hz sine wave (blue) sampled at 10 ms (red) results in a 3 Hz sine wave delayed by $1 / 2$ of a sample (5 ms)

Open-Loop System is then

$$
G(s) \cdot K(z) \cdot \exp \left(\frac{-s T}{2}\right)
$$

Find the point on the damping line where the phase is 180 degrees

$$
\angle\left(G(s) \cdot K(z) \cdot \exp \left(\frac{-s T}{2}\right)\right)=180^{\circ}
$$

Note: You're kind-of mixing planes with this approach. Since you only care about one point, however, you don't care. You just

- Guess the point, s
- Compute the corresponding point in the z -plane as $\mathrm{z}=\mathrm{e}^{\mathrm{sT}}$
- Evaluate the above function, and
- Repeat until the angles add up to 180 degrees

Example: Find the gain, k, that results in 20% overshoot in the step response.

Guess \#1: $\mathrm{s}=-5+\mathrm{j} 10$

```
T = 0.01;
s = 5*( -1 + j*2);
z = exp(s*T);
1000 / ( (s+5)* (s+10)*(s+20)) * exp(-s*T/2)
    - 0.5009862 + 0.0882455i
```

The angle isn't zero (the complex part is non-zero)

- Try a different s, such as 10% smaller

```
s = s*0.9;
z = exp(s*T);
1000 / ( (s+5)*(s+10)*(s+20)) * exp(-s*T/2)
    - 0.5110062 + 0.0796359i
```

Keep going until the complex part is zero

- Angle is 180 degrees
- time pases.....

```
s = 0.9999*s;
1000 / ( (s+5)*(s+10)*(s+20)) * exp(-s*T/2)
ans = -0.5853 - 0.0000i
```

Close enough. This gives

```
>> k = 1/abs(ans)
k = 1.7085
>> s
s = -4.5760 + 9.1519i
>> z
z = 0.9465 + 0.0950i
```

Note:

- The numerical method gives almost the same answer as root locus
- It's easier and is actually more accurate
no s to z conversions

	Root Locus	Numerical Approach
k	1.7044	1.7085
s	-	$-4.5760+9.1519 \mathrm{i}$
z	$0.9513+\mathrm{j} 0.0873$	$0.9465+0.0950 \mathrm{i}$

Handout: Sketch the root locus of

$$
G(z)=\left(\frac{0.2}{(z-0.9)(z-0.5)}\right)
$$

Find k for

- The breakaway point
- A damping ratio of 0.4
- The maximum gain for stability

Summary

- Root locus works in the s-plane
- Root locus works in the z-plane

The only difference is how you interpret the result:

$$
\begin{aligned}
& T_{s}=\left(\frac{\ln (0.02)}{\ln (|z|)}\right) \\
& \text { period }=\left(\frac{360^{0}}{\angle(z)}\right) \cdot T \text { seconds } \\
& z=e^{s T}
\end{aligned}
$$

