Digital PID Control
 ECE 461/661 Controls Systems
 Jake Glower - Lecture \#32

Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

Digital PID Control

Similar to analog PID control except

- P: Proportional
- I: Integral
- D: Delay

P:

$$
K(z)=P
$$

PI:

$$
K(z)=P+I\left(\frac{z}{z-1}\right)=k\left(\frac{z-a}{z-1}\right)
$$

PID:

$$
K(z)=P+I\left(\frac{z}{z-1}\right)+D\left(\frac{1}{z}\right)=k\left(\frac{(z-a)(z-b)}{z(z-1)}\right)
$$

Example: $G(s)=\left(\frac{1000}{(s+2)(s+4)(s+6)(s+8)}\right)$

- Design P, PI, PID
- 20% Overshoot
- $\mathrm{T}=50 \mathrm{~ms}$

Step 1: Convert $G(s)$ to the z-Domain

$$
\begin{array}{ll}
\mathrm{s}=-2 & \mathrm{z}=0.9048 \\
\mathrm{~s}=-4 & \mathrm{z}=0.8187 \\
\mathrm{~s}=-6 & \mathrm{z}=0.7408 \\
\mathrm{~s}=-8 & \mathrm{Z}=0.6703 \\
G(z) \approx\left(\frac{k z^{2}}{(z-0.9048)(z-0.8187)(z-0.7408)(z-0.6703)}\right)
\end{array}
$$

Matching the DC gain:

$$
\begin{aligned}
& G_{s}(s=0)=G_{z}(z=1)=2.6042 \\
& G(z) \approx\left(\frac{0.003841 z^{2}}{(z-0.9048)(z-0.8187)(z-0.7408)(z-0.6703)}\right)
\end{aligned}
$$

Add two zeros at $\mathrm{z}=0$ to match the delay

P Compensation: $\mathrm{K}(\mathrm{z})=\mathrm{P}=\mathrm{k}$.

Method \#1: Analyze the system in the z-pla

$$
G(z) \approx\left(\frac{0.003841 z^{2}}{(z-0.9048)(z-0.8187)(z-0.7408)(z-0.6703)}\right)
$$

Sketch the root locus

- Find where the damping is 0.4559
$\mathrm{G}=\operatorname{zpk}([0,0],[0.9048,0.8187,0.7408,0.6703], 0.003841$
$\mathrm{k}=\operatorname{logspace}(-2,2,300$)';
R = rlocus(G,k);
\% add in the damping line
$s=[0: 0.01: 10]$ ' * ($-1+j * 2$);
T = 0.05;
z = exp(s*T);
plot(real(R'), imag(R'), 'b', real(z), imag(z),'r');

This gives

$$
\mathrm{z}=0.9224+\mathrm{j} 0.1289
$$

and
$\mathrm{G}(\mathrm{z})=-2.4547 \mathrm{k}=-1$
$\mathrm{k}=0.4047$

Method \#2: Model the sample and hold with a $1 / 2$ sample delay:

$$
G(s)=\left(\frac{1000}{(s+2)(s+4)(s+6)(s+8)}\right)\left(e^{-0.025 s}\right)
$$

Search along the damping ratio of 0.4559

$$
s=\alpha \angle 117.1229^{\circ}
$$

Iterate until the angles add up to 180 degrees

$$
\begin{aligned}
& \mathrm{s}=-1.3887+\mathrm{j} 2.7111 \\
& \mathrm{z}=0.9244+\mathrm{j} 0.1261
\end{aligned}
$$

At any point on the root locus, $\mathrm{GK}=-1$

$$
G(s)=-2.5892
$$

so

$$
\mathrm{k}=0.3862
$$

PI Compensation: $K(z)=k\left(\frac{z-a}{z-1}\right)$

- Add a zero at $\mathrm{s}=0(\mathrm{z}=1)$

Makes it a Type-1 system

Method \#1: Design in the z-plane.

$$
G(z) \approx\left(\frac{0.003841 z^{2}}{(z-0.9048)(z-0.8187)(z-0.7408)(z-0.6703)}\right)
$$

Cancel the slowest pole

$$
K(z)=k\left(\frac{z-0.9048}{z-1}\right)
$$

Sketch the resulting root locus:

```
G = zpk([0,0],[1,0.8187,0.7408,0.67r
k = logspace(-2,2,1000)';
R = rlocus (G,k,0.4559)';
// damping lines from before plot(real(R), imag(R), 'b', real(z)
```

Find z :

$$
\mathrm{z}=0.9522+\mathrm{j} 0.0840
$$

This gives
$\mathrm{G}(\mathrm{z})=-3.4289$
$\mathrm{k}=0.2908$
$K(z)=0.2908\left(\frac{z-0.9048}{z-1}\right)$

Method \#2: G(s) * Sample \& Hold * K(z):

$$
G(s)=\left(\frac{1000}{(s+2)(s+4)(s+6)(s+8)}\right) \cdot\left(e^{-0.025 s}\right) \cdot k\left(\frac{z-0.9048}{z-1}\right)
$$

Search in the s (and corresponding z) plane

$$
\begin{aligned}
& s=0.8734+j 1.7050 \\
& z=0.9538+j 0.0815
\end{aligned}
$$

At any point on the root locus, $\mathrm{GK}=-1$
GK $=-3.6004$
$\mathrm{k}=0.2777$
SO

$$
K(z)=0.2777\left(\frac{z-0.9048}{z-1}\right)
$$

Verify your design in VisSim.

Note:

- Almost the same result
- Latter method is more accurate

I:

- Initial guess for U is zero
- Pole at $\mathrm{s}=-2$ slows down the system

PI:

- Initial guess for U is 0.2777

PID Compensation: $K(z)=k\left(\frac{(z-a)(z-b)}{z(z-1)}\right)$
Method \#1: Convert to the z-plane

$$
G(z) \approx\left(\frac{0.003841 z^{2}}{(z-0.9048)(z-0.8187)(z-0.7408)(z-0.6703)}\right)
$$

Cancel two poles

$$
K(z)=k\left(\frac{(z-0.9048)(s-0.8187)}{z(z-1)}\right)
$$

Sketch the resulting root locus:

```
G = zpk([0,0],[1,0,0.7408,0.6703],0.003841);
k = logspace(-2,2,1000)';
R = zlocus(G,k,0.4559)';
// add damping line from before
plot(real(R), imag(R), real(z),imag(z));
```

Find z :

$$
z=0.9164+j 0.1373
$$

At this point
$G K=-0.3524 \mathrm{k}=-1$
$\mathrm{k}=2.8381$
and

$$
K(z)=2.8381\left(\frac{(z-0.9048)(s-0.8187)}{z(z-1)}\right)
$$

Method \#2: G(s) * Sample \& Hold * $\mathrm{K}(\mathrm{z})$ is

$$
\begin{aligned}
& G(s)=\left(\frac{1000}{(s+2)(s+4)(s+6)(s+8)}\right) \cdot\left(e^{-0.025 s}\right) \cdot k\left(\frac{(z-0.9048)(s-0.8187)}{z(z-1)}\right) \\
& \text { arch along the damping line until angles add up to } 180 \text { degrees }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{s}=-1.4422+\mathrm{j} 2.8155 \\
& \mathrm{z}=0.9212+\mathrm{j} 0.1305
\end{aligned}
$$

At this point, GK $=-1$
GK $=-0.3824 \mathrm{k}=-1$
$\mathrm{k}=2.6153$
SO

$$
K(z)=2.6153\left(\frac{(z-0.9048)(s-0.8187)}{z(z-1)}\right)
$$

Note:

- Two zeros allow you to speed up the system

You get an impulse at $\mathrm{k}=1$

Handout: Design a PI compensator for

$$
G(z)=\left(\frac{0.1}{(z-0.9)(z-0.5)}\right)
$$

that results in a damping ratio of 0.4

Changing the Sampling Rate

The 2% settling time is 3 seconds
$\mathrm{T}=50 \mathrm{~ms}$ is too fast

- Gives 60 samples
- Results in an impulse for PID

Energy is width * height
Needs a height of 2.6153 (off graph) to provide enough energy
$\mathrm{T}=200 \mathrm{~ms}$ is more reasonable

- 15 samples in 3 seconds
- More width means less height for U at $\mathrm{k}=0$

PID with $\mathbf{T}=200 \mathrm{~ms}$

Plant * Sample \& Hold * K(z)

$$
\left(\frac{1000}{(s+2)(s+4)(s+6)(s+8)}\right) \cdot e^{-0.1 s} \cdot k\left(\frac{(z-0.6703)(z-0.4493)}{z(z-1)}\right)
$$

Note: Zeros move in the z-plane as $z=e^{s T}$
Search along the damping line:

$$
\begin{aligned}
& \mathrm{s}=-1.0747+\mathrm{j} 2.1494 \\
& \mathrm{z}=0.7332+\mathrm{j} 0.3362 \\
& \mathrm{k}=0.6893
\end{aligned}
$$

and

$$
K(z)=0.6893\left(\frac{(z-0.6703)(z-0.4493)}{z(z-1)}\right)
$$

This is about the same response as we had before, only with

- A much more reasonable input at $t=0$ (0.689 vs. 2.615)
- A much slower sampling rate (200 ms vs 50 ms)

Faster sampling rates are not always good. They can actually cause problems.

Summary:

Digital PID control is similar to analog PID

- P: Gain compensation
- I: Add an integrator (make the system type-1)
- PI: Add an integrator and one zero. Cancel one pole with the zero
- PID: Add an integrator and two zeros. Cancel two poles

The main difference is 'D' stands for delay rather than derivative

