Meeting Design Specs in the z-plane

ECE 461/661 Controls Systems Jake Glower - Lecture \#33

Please visit Bison Academy for corresponding
lecture notes, homework sets, and solutions

Meeting Design Specs in the z-plane

Add poles and zeros to $K(z)$ to meet the design specs.

- Add zeros to cancel slow poles
- For every zero you add, you need to add a pole
- One of these poles goes to $\mathrm{s}=0(\mathrm{z}=1)$ if you need to make the system type-1, and
- The remaining poles go somewhere out of the way (or are adjusted to meet the design specs).

Things to avoid when designing $K(z)$

- Avoid placing poles outside the unit circle.

This results in the open-loop system being unstable
This makes it difficult (sometimes dangerous) to test and debug.

- Avoid placing poles on the negative real axis (between -1 and 0).

This results in chatter (+ /- inputs, changing every sample)

Design Example

Design a compensator, $\mathrm{K}(\mathrm{z})$, for the following system

$$
G(s)=\left(\frac{50}{(s+1)(s+3)(s+10)}\right)
$$

that results in

- No error for a step input,
- 20% overshoot for a step input, and
- A 2% settling time of 4 seconds.

Method \#1: z-Plane Analysis

Pick T $=200 \mathrm{~ms}$:

- $\mathrm{Ts}=4$ seconds
- $\mathrm{T}=200 \mathrm{~ms}$ gives 20 samples in 4 seconds

Enough for the controller to figure out what the input needs to be

Convert to the z-Plane

$$
G(z) \approx\left(\frac{0.1179 z}{(z-0.8187)(z-0.5488)(z-0.1353)}\right)
$$

The design requirements translate to

- Make the system type-1
- Place the closed-loop dominant pole at $\mathrm{s}=-1+\mathrm{j} 2$ (s -plane)
- Place the closed-loop dominant pole at $\mathrm{z}=0.7541+\mathrm{j} 0.3188$
z-plane found from $z=e^{s T}$

$$
\begin{gathered}
G(z) \approx\left(\frac{0.1179 z}{(z-0.8187)(z-0.5488)(z-0.1353)}\right) \\
K(z)=k\left(\frac{(z-0.8187)(z-0.5488)}{(z-1)(z-a)}\right) \\
G K=\left(\frac{0.1179 k z}{(z-1)(z-0.1353)(z-a)}\right)
\end{gathered}
$$

Pick 'a' so that $0.7541+\mathrm{j} 0.3188$ is on the root locus.

$$
\begin{aligned}
& \left(\frac{0.1179 z}{(z-1)(z-0.1353)}\right)_{z}=0.3444 \angle-131.98^{0} \\
& a=0.7541-\left(\frac{0.3188}{\tan \left(48.01^{0}\right)}\right) \\
& a=0.4672
\end{aligned}
$$

To find ' k ', set $\mathrm{GK}=-1$ at $\mathrm{z}=0.7541+\mathrm{j} 0.3188$

$$
\begin{aligned}
& G K=\left(\frac{0.1179 z}{(z-1)(z-0.4672)(z-0.1353)}\right)_{z=0.7541+j 0.3188}=0.8029 \angle 180^{0} \\
& k=\frac{1}{0.8029}=1.2454
\end{aligned}
$$

and

$$
K(z)=1.2454\left(\frac{(z-0.8187)(z-0.5488)}{(z-1)(z-0.4672)}\right)
$$

Checking in VisSim:

- Note that the overshoot is a little off.
- This is due to the model for $\mathrm{G}(\mathrm{z})$ being slightly off.
- (needs 1.55 zeros at $\mathrm{z}=0$)

Handout: Given the system

$$
G(z)=\left(\frac{0.2 z}{(z-0.9)(z-0.7)}\right)
$$

design a compensator, $K(z)$, that results in

- A type-1 system, and
- A closed-loop dominant pole at $\mathrm{z}=0.6+\mathrm{j} 0.4$

Method \#2: Mixed Plane Analysis

All we care about is one point

- Point on damping line where angles add up to 180 degrees

You don't really need to sketch the root locus

- All we need is that one point

Analyze the hybrid system:

$$
G(s) \cdot \exp \left(\frac{-s T}{2}\right) \cdot K(z)
$$

Step 1: Decide where you want to place the closed-loop poles. From before

- $s=-1+j 2$
- $\mathrm{z}=0.7541+\mathrm{j} 0.3188$

Step 2: Model G(s) and the zero-order hold (modeled as a $1 / 2$ sample delay)

$$
G(s) \cdot Z O H=\left(\frac{50}{(s+1)(s+3)(s+10)}\right) \cdot e^{-s T / 2}
$$

Step 3: Pick the form of $\mathrm{K}(\mathrm{z})$

$$
\begin{aligned}
& K(z)=k\left(\frac{(z-0.8187)(z-0.5488)}{(z-1)(z-a)}\right) \\
& G \cdot K \cdot Z O H=\left(\frac{50}{(s+1)(s+3)(s+10)}\right) \cdot e^{-s T / 2} \cdot k\left(\frac{(z-0.8187)(z-0.5488)}{(z-1)(z-a)}\right)
\end{aligned}
$$

Note that the zeros cancel poles

- $\mathrm{s}=-1 \quad \mathrm{z}=0.8187$
- $\mathrm{s}=-3 \mathrm{z}=0.5488$

To find 'a', evaluate at s (z). Pick 'a' to make the angles add up to 180 degrees

$$
\begin{aligned}
& \left(\left(\frac{50}{(s+1)(s+3)(s+10)}\right) \cdot e^{-s T / 2} \cdot\left(\frac{(z-0.8187)(z-0.5488)}{(z-1)}\right)\right)_{s=-1+j 2}= \\
& =\left(\left(0.9587 \angle-147^{0}\right) \cdot\left(0.9048 \angle-11.46^{0}\right) \cdot\left(0.3063 \angle 31.03^{0}\right)\right) \\
& =0.2657 \angle-127.96^{0}
\end{aligned}
$$

To make the angle 180 degrees, (z-a) contributes 52.04 degrees

$$
a=0.7541-\left(\frac{0.3188}{\tan \left(52.04^{\circ}\right)}\right)=0.5054
$$

This results in

$$
K(z)=k\left(\frac{(z-0.8187)(z-0.5488)}{(z-1)(z-0.5054)}\right)
$$

To find ' k '

$$
\left(\left(\frac{50}{(s+1)(s+3)(s+10)}\right) \cdot e^{-s T / 2} \cdot\left(\frac{(z-0.8187)(z-0.5488)}{(z-1)(z-0.5054)}\right)\right)_{s=-1+j 2}=0.8028 \angle 180^{0}
$$

so

$$
k=\frac{1}{0.8028}
$$

and

$$
K(z)=1.2456\left(\frac{(z-0.8187)(z-0.5488)}{(z-1)(z-0.5054)}\right)
$$

Checking in VisSim:

- The overshoot is closer to 20%
- No s to z conversion (and resulting errors)

Summary:

Designing $\mathrm{K}(\mathrm{z})$ to meet the design specs is similar to the design in the s-plane

- Add a pole at $\mathrm{s}=0(\mathrm{z}=1)$ to make the system type-1 if needed
- Start cancelling poles with zeros to speed up the system
- Once the system is too fast, start adding poles so that

The number of poles equals the number of zeros, and
$G(z) * K(z)=-1$ at the design point, or
$G(s) * z o h * K(z)=-1$ at the design point

