Digital Control of a DC Servo Motor

ECE 461/661 Controls Systems Jake Glower - Lecture \#34

Please visit Bison Academy for corresponding
lecture notes, homework sets, and solutions

Problem:

- Control the speed of a DC servo motor
- Control the position of a DC servo motor

The mathematical model from before:

- Clifton 000-053479-002

$$
\begin{aligned}
& \omega \approx\left(\frac{39.28}{s+6}\right) V_{a} \\
& \theta \approx\left(\frac{39.28}{s(s+6)}\right) V_{a}
\end{aligned}
$$

With $\mathrm{T}=20 \mathrm{~ms}$

$$
\begin{aligned}
& \omega \approx\left(\frac{0.7404}{z-0.8869}\right) V_{a} \\
& \theta \approx\left(\frac{0.02 z}{z-1}\right)\left(\frac{0.7404}{z-0.8869}\right) V_{a}
\end{aligned}
$$

Hardware Setup

- Use a microcontroller to compute speed (or angle),
- Also use it to implement K(z)

Speed Control: Gain Compensation

$G(s)=\left(\frac{39.28}{s+6}\right)$
$T=20 \mathrm{~ms}$
$G(z)=\left(\frac{0.7404}{z-0.8869}\right)$
$K(s)=k$

$G K=\left(\frac{0.7404 k}{z-0.8869}\right)$

Predicted Response

$$
(G K)_{s}=-1
$$

$\mathrm{z}=0.6$

- $\mathrm{k}=0.3875$
$\mathrm{z}=0.4$
- $\mathrm{k}=0.6576$
$\mathrm{z}=0.2$
- $\mathrm{k}=0.9277$

Experimental Results:

$\mathrm{z}=0.6$

- $\mathrm{k}=0.3875$
$\mathrm{z}=0.4$
- $\mathrm{k}=0.6576$
$\mathrm{z}=0.2$
- $\mathrm{k}=0.9277$

Code:

```
```

while(1) {

```
```

while(1) {
E = REF - SPEED;
E = REF - SPEED;
U = 0.9722 * E;
U = 0.9722 * E;
D2A(U);
D2A(U);
Wait_20ms();
Wait_20ms();
}

```
    }
```

```
    :
```

```
    :
```


Speed Control: I Compensation

$$
\begin{aligned}
& K(z)=\left(\frac{k z}{z-1}\right) \\
& G K=\left(\frac{0.7404 k \cdot z}{(z-1)(z-0.8869)}\right)
\end{aligned}
$$

Type-1 System

- No Error for a Step Input

Code:

```
while(1) {
E = REF - SPEED;
U = U + k * E;
D2A(U);
Wait_20ms();
}
```


I Compensation

$$
\mathrm{z}=0.99
$$

- $\left(\frac{0.7404 k \cdot z}{(z-1)(z-0.8869)}\right)_{z=0.99}=-1$
- $\mathrm{k}=0.0013$
$\mathrm{z}=0.95$
- $\left(\frac{0.7404 \mathrm{k} \cdot z}{(z-1)(z-0.8869)}\right)_{z=0.95}=-1$
- $\mathrm{k}=0.0045$

$$
z=0.9434+j 0.0535
$$

- $\left(\frac{0.7404 k \cdot z}{(z-1)(z-0.8869)}\right)_{z}=-1$
- $\mathrm{k}=0.0082$

Experimental Results

- I Compensation

Steady-state speed $=10 \mathrm{rad} / \mathrm{sec}$

- No Error for a step input
- Type-1 system

The response is what the root locus plot predicted

Speed Control: PI Control

$$
\begin{aligned}
& K(z)=k\left(\frac{z-0.8869}{z-1}\right) \\
& G K=\left(\frac{0.7404 k}{z-1}\right)
\end{aligned}
$$

Code:

```
while(1) {
        :
        E1 = E0;
        EO = REF - SPEED;
        U = U + k * (EO - 0.8869*E1);
        D2A(U);
        Wait_20ms();
    }
```


PI Control: Experimental Results

$$
\begin{aligned}
& \mathrm{z}= 0.99 \\
& \mathrm{k}=0.0135 \\
& \mathrm{z}=0.9 \\
& \mathrm{k}=0.1351 \\
& \mathrm{z}= 0.6 \\
& \mathrm{k}=0.5402
\end{aligned}
$$

Again, the results are what the root locus plot predicts

Position Control:

- Change the sensor to an angle sensor and you have position control

$$
\theta=\left(\frac{39.28}{s(s+6)}\right) V_{a}=\left(\frac{0.0148 z}{(z-1)(z-0.8869)}\right) V_{a}
$$

Position Control: K(z) = k

$$
\begin{aligned}
& \theta=\left(\frac{0.0148 z}{(z-1)(z-0.8869)}\right) V_{a} \\
\mathrm{z}= & 0.99 \\
& \mathrm{k}=0.2291 \\
\mathrm{z}= & 0.95 \\
& \mathrm{k}=0.458 \\
\mathrm{z}= & 0.95+\mathrm{j} 0.05 \\
& \mathrm{k}=1.1456
\end{aligned}
$$

Position Control: K(s) = k

- Experimental Results

In theory, the steady-state error is zero

- Type-1 System

In practice, static friction causes a slight error

Otherwise, the response is what the root locus plot predicts

Lead Compensation

- Cancel the pole at $\mathrm{s}=-6$
- Replace it with a pole at $\mathrm{s}=-19.2$

$$
K(z)=k\left(\frac{z-0.8869}{z-0.3}\right)
$$

$$
G K=\left(\frac{0.0148 z}{(z-1)(z-0.3)}\right)
$$

$$
z=0.4514+j 0.3102
$$

$$
k=26.8
$$

$$
K(z)=26.8\left(\frac{z-0.8869}{z-0.3}\right)
$$

Lead Compensation:

$$
K(z)=26.8\left(\frac{z-0.8869}{z-0.3}\right)
$$

Again, the experimental results are what root locus plots predicted

- Slight steady-state error due to static friction
- (nonlinear terms)

Code:

```
while(1) {
    :
    E1 = E0;
    EO = REF - SPEED;
    U = 0.3*U + k * (E0 - 0.8869*E1);
    D2A(U);
    Wait_20ms();
    }
```


Summary

Root locus really works

- It predicts how the system will behave as the gain changes
- The response is as the root locus plot predicts

Digital Control also really works

- It saves hardware: you don't need to build an op-amp circuit
- It removes the DC offset that op-amps have
- Download a new program and you have a new controller

