Gain and Lead with Bode Plots

ECE 461/661 Controls Systems Jake Glower - Lecture #37

Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

Gain Compensation

Nichols charts are useful

• They show directly what you are trying to do: keep away from -1

Nichols charts are a pain to use:

- They are difficult to draw
- The resonance is difficult to find the frequency where G(jw) is tangent to the M-circle changes as you change the gain.

Phase Margin

• Distance to -1 when open loop gain is 0dB

Assume the resonance is the same as the 0dB gain frequency

• Close but a little off

If so,

• Designing for a phase margin is equivalent to designing for a resonance (Mm)

Relationship between Mm and Phase Margin:

The phase margin which approximately corresponds to a certain resonance is from

$$G(j\omega) = 0dB \angle \phi = 1 \angle \phi$$
$$\left|\frac{G}{1+G}\right| = \left|\frac{1 \angle \phi}{1+1 \angle \phi}\right| = M_m$$
$$\left|1 + (\cos \phi + j \sin \phi)\right| = \frac{1}{M_m}$$
$$(1 + \cos \phi)^2 + (\sin \phi)^2 = \frac{1}{M_m^2}$$
$$1 + 2\cos \phi + \cos^2 \phi + \sin^2 \phi = \frac{1}{M_m^2}$$
$$2 + 2\cos \phi = \frac{1}{M_m^2}$$

1 /

Phase Margin = $180^{\circ} - |\phi|$

Example: Find K so that $G(s) = \left(\frac{2000}{s(s+5)(s+20)}\right)$ has

- Mm < 6dB, and
- Minimal error for a step and ramp input.

Solution:

i) Find the phase margin corresponding to Mm = 6dB:

$$\cos\phi = \left(\frac{\frac{1}{M_m^2} - 2}{2}\right)$$

 $\phi = -151.04^{\circ}$

Phase Margin = 28.96°

ii) Find the frequency where G(jw) has a phase shift of -151.04°

 $G(j5.2362) = 2.5474 \angle -151.04^{\circ}$

iii) Adjust k so that the gain at this frequency is one.

$$k = \frac{1}{2.5474}$$

$$k = 0.3926 = -8.1 dB$$

Note:

- GK intersects the M-circle at 0dB
- The actual resonance is slightly more than +6dB

Resulting Closed-Loop System:

- Phase margin tells you Mm
- Mm tells you ζ
- 0dB gain frequency tells you imag(s)

K(s)	Kv	0dB Gain Freq	Phase Margin	Mm	CL Dom Poles (approx)
0.3926	7.85	5.24 rad/sec	28.96 deg	2.00 (6dB)	-1.41 + j5.24

Example 2: Design a gain compensator for Mm = 6dB

• G(s) isn't given

Step 1:

- Convert Mm to phase
- $\phi = -151.04^{\circ}$
- Phase Margin = 28.96°

Step 2:

- Find the frequency where G(jw) has a phase shift of -152° .
- w = 5.2 rad/sec

Step 3:

- Adjust k
- Gain = 1 when phase = -152 degrees
- G(j5.2) = 7dB
- k = 7dB

Lead Compensator Design using Bode Plots

Purpose:

- Push G(jw) away from -1
- Add phase lead (good)
- Without too much gain (bad)
- At the resonance

The frequency that's too close to -1

Generic Lead Compensator: $K(s) = 10\left(\frac{s+a}{s+10a}\right)$

- Adds phase lead (good: pushes you away from -1)
- Adds gain (bad: pushes you closer to -1)
- Rule: Place the zero 1..3 times the resonance frequency

Example: Design a lead compensator for a phase margin of 28.96 degrees (Mm = 2)

$$G(s) = \left(\frac{2000}{s(s+5)(s+20)}\right)$$

Step 1: Add gain until you're too close to -1 (phase margin = 28.96 degrees)

- K(s) = k = 0.3926
- Resonance = 5.24 rad/sec

```
w = logspace(-2,2,250)';
G = zpk([],[0,-5,-20],2000);
Gw = Bode2(G,w);
```

Nichols2(Gw*0.3926, 2);

Step 2: Add a lead compensator of the form

$$K(s) = 10\left(\frac{s+a}{s+10a}\right)$$
 $a = (1..3) \cdot 5.24 \frac{rad}{sec}$

Let a = 6

$$K(s) = k\left(\frac{s+6}{s+60}\right)$$

$$GK = \left(\frac{2000k(s+6)}{s(s+5)(s+20)(s+60)}\right)$$

Note:

• K(s) pushes GK(jw) away from -1

Step 3: Add gain

- Phase margin = 29 degrees • $K(s) = k \left(\frac{s+6}{s+60}\right)$
- $GK = \left(\frac{2000(s+6)}{s(s+5)(s+20)(s+60)}\right)$
- $GK(j17.76) = 0.0684 \angle -151.04^{\circ}$
- $k = \frac{1}{0.0684} = 14.62$

•
$$K(s) = 14.62 \left(\frac{s+6}{s+60}\right)$$

Results:

- Lead increases the phase margin
- Lead & Gain increases Kv and 0dB gain frequency

Better tracking Faster system

K(s)	Kv	0dB Gain Freq	Phase Margin	Mm	CL Dom Poles (approx)
0.3926	7.85	5.24 rad/sec	28.96 deg	2.00 (6dB)	-1.41 + j5.24
$;3.93\left(\frac{s+6}{s+60}\right)$	7.85	6.64 rad/sec	60.18 deg	1.00 (0dB)	-6.64 + j0
$;14.93\left(\frac{s+6}{s+60}\right)$	29.86	17.76 rad/sec	28.96 deg	2.00 (6dB)	-4.78 + j17.76

Handout: Design a gain compensator for a 50 degree phase margin

Handout: Design a lead compensator for a 50 degree phase margin

Lead Compensator Shortcut:

Given G(s)

$$G(s) = \left(\frac{2000}{s(s+5)(s+20)}\right)$$

Place the zero to cancel the 2nd slowest pole

- Same rule we used with root locus
- Same result we got using Nichols charts and Bode plots

5.2 < a < 15.6

If you're going to miss the pole, miss on the high-side

 $K(s) = k\left(\frac{s+5}{s+50}\right)$

Add gain to get the desired phase margin

Lead Compensator Design by Inspection

- The following response is obtained with gain compensation: K(s) = k.
- Design a lead compensator.
- Root Locus:
 - No idea where to start
- Nichols Chart
 - Y(jw) has a strong signal at 2 rad/sec
 - The resonance is close to 2 rad/sec
 - The phase margin is too small at 2 rad/sec
 - Pick 'a' to be 1..3 x 2

$$K(s) = k\left(\frac{s+2}{s+20}\right)$$

Summary:

The purpose of a lead compensator is to

- Pull the root locus left (root locus techniques), or
- Add phase lead, moving G(jw) away from -1

Place the zero 1..3 times the frequency which is too close to -1 Add a pole 3-10 times the zero to add phase lead