ECE 463/663 - Homework \#8

Calculus of Variations. LQG Control. Due Monday, April 1th, 2019

Soap Film

1) Calculate the shape of a soap film connecting two rings around the X axis:

- $Y(0)=5$
- $Y(3)=4$

2) Calculate the shape of a soap film connecting two rings around the X axis: (trick question...)

- $Y(0)=5$
- $\mathrm{Y}(10)=4$

3) Calculate the shape of a soap film connecting two rings around the X axis:

- $Y(0)=5$
- $Y(2)=$ free

Hanging Chain

4) Calculate the shape of a hanging chain subject to the following constraints

- Length of chain $=10$ meters
- Left Endpoint: $(-3,3)$
- Right Endpoint: $(+3,0)$

Ricatti Equation

5) Find the function, $x(t)$, which minimizes the following funcional

$$
\begin{aligned}
& J=\int_{0}^{2}\left(X^{2}+5 \dot{X}^{2}\right) d t \\
& x(0)=2 \\
& x(2)=0
\end{aligned}
$$

6) Find the function, $x(t)$, which minimizes the following funcional

$$
\begin{aligned}
& J=\int_{0}^{2}\left(x^{2}+5 u^{2}\right) d t \\
& \dot{x}=-0.1 x+u \\
& x(0)=2 \\
& x(2)=0
\end{aligned}
$$

LQG Control

7) Cart and Pendulum (HW \#5): Design a full-state feedback control law of the form

$$
U=K_{r} R-K_{x} X
$$

for the cart and pendulum system from homework \#5 using LQG control so that

- The DC gain is 1.00
- The 2% settling time is 8 seconds, and
- There is less than 10% overshoot for a step input.

Compare your results with homework \#5

- Where are the closed-loop poles with pole placement and with LQG control?
- Are the feedback gains larger or smaller with LQG control?
- Which one works better?

8) Ball and Beam (HW \#5): Design a full-state feedback control law of the form

$$
U=K_{r} R-K_{x} X
$$

for the ball and beam system from homework \#6 using LQG control so that

- The DC gain is 1.00
- The 2% settling time is 8 seconds, and
- There is less than 10% overshoot for a step input.

Compare your results with homework \#5

- Where are the closed-loop poles with pole placement and with LQG control?
- Are the feedback gains larger or smaller with LQG control?
- Which one works better?

Note: With LQG control it's pretty much trial and error.

- Let $\mathrm{R}=1$
- Increasing the weighting on $y^{2}\left(Q=C^{T} C\right)$ speeds up the system
- Incresing the weighting on $(\mathrm{dy} / \mathrm{dt})^{2}\left(\mathrm{Q}=(\mathrm{CA})^{\mathrm{T}}(\mathrm{CA})\right)$ adds friction / reduces oscillation
- Repeat until the step response or eigenvalues meet the requirements

