ECE 463/663 - Homework \#8

Calculus of Variations. Due Monday, April 1, 2019
Note: If there is no solution to a problem, explain why this is so.

1) Determine the shape of a soap film connecting two rings around the X-axis subject to the constaint

- $y(0)=5$
- $y(3)=4$

The general solution is of the form

$$
y=a \cosh \left(\frac{x-b}{a}\right)
$$

Plug in the endpoints to get two equations for two unknowns

$$
\begin{aligned}
& 5=a \cosh \left(\frac{-b}{a}\right) \\
& 4=a \cosh \left(\frac{3-b}{a}\right)
\end{aligned}
$$

Solving in Matlab. Create a cost function

```
function [ J ] = cost( z )
    a = z(1);
    b = z(2);
    e1 = a*cosh(b/a) - 5;
    e2 = a* cosh( (3-b)/a ) - 4;
    J = e1.^2 + e2.^2;
    end
```

Solve using fminsearch()
>> [z,e] = fminsearch('cost',[1,2])
z =

a	b
0.5323	1.5598

e =
3.8330e-008

The sum-squared error (b) is closed to zero, so
ans: $y=0.5233 \cosh \left(\frac{x-1.5598}{0.5323}\right)$

```
>> x = [0:0.001:3]';
>> y = 0.5323*cosh( (x-1.5598)/0.5323 );
>> plot(x,y,x,-y);
```


Shape of soap film rotated about the X axis
2) Determine the shape of a soap film connecting two rings around the X-axis subject to the constaint

- $y(0)=5$
- $y(10)=4$

Change the cost function

```
function [ J ] = cost( z )
    a = z(1);
    b = z(2);
    e1 = a* cosh(b/a) - 5;
    e2 = a*cosh( (10-b)/a ) - 4;
    J = e1.^2 + e2.^2;
    end
```

Solve in Matlab
>> $[z, e]=$ fminsearch('cost', $[1,2])$
z =

a	b
4.1646	5.2092

$\mathrm{e}=$
18.7205

The sum-squared error is not zero - fmsearch() cannot find a solution.

Turns out there is no solution. The soap film breaks if the two endpoints are too far apart (they were close to breaking in problem \#1)
ans: No Solution
3) Calculate the shape of a soap film connecting two rings around the X axis:

- $Y(0)=5$
- $Y(2)=$ free

The general solution is of the form

$$
y=a \cosh \left(\frac{x-b}{a}\right)
$$

The left endpoint gives

$$
5=a \cosh \left(\frac{b}{a}\right)
$$

The right endpoint gives

$$
\begin{aligned}
& \dot{y}=\sinh \left(\frac{x-b}{a}\right)=0 \\
& \sinh \left(\frac{2-b}{a}\right)=0 \\
& \mathrm{~b}=2
\end{aligned}
$$

Solving in Matlab

```
function [ J ] = cost4( z )
    a = z(1);
    b = 2;
    e1 = a* cosh( b/a ) - 5;
    J = e1^2;
    end
[a,e] = fminsearch('cost4',1)
a = 0.7898
e= 9.1019e-008
```

So

$$
y=0.7898 \cosh \left(\frac{x-2}{0.7898}\right)
$$

$x=[0: 0.01: 4]^{\prime} ;$
$\mathrm{a}=\mathrm{z}$;
b $=2$;
$y=a * \cosh ((x-b) / a)$;
plot (x, y) ;
plot ([2, 2], [0, 5], 'r--')
$p l o t\left(x, y, ' b^{\prime},[2,2],[0,5], ' r-l^{\prime}\right)$

4) Determine the shape of a hanging chain with gravity in the -y direction. Assume the chain is 10 meters long hanging between two points:

- Left end: $x=-3 y=3$
- Right end: $x=+3 y=0$

Solution (from lecture notes)

$$
y=a \cosh \left(\frac{x-b}{a}\right)-M
$$

To solve, you need three equations for three unknowns. Use the two endpoints:
(1) $3=a \cosh \left(\frac{-3-b}{a}\right)-M$
(2) $0=a \cosh \left(\frac{3-b}{a}\right)-M$

The third constraint is the length:

$$
\left(a \sinh \left(\frac{x-b}{a}\right)\right)_{x_{0}}^{x_{1}}=L
$$

(3) $a \sinh \left(\frac{3-b}{a}\right)-a \sinh \left(\frac{-3-b}{a}\right)=10$

Solve in Matlab. Set up a cost function

```
function [ J ] = cost4( z )
    a = z(1);
    b = z(2);
    M = z(3);
    e1 = a*cosh( (-3-b)/a ) - M - 3;
    e2 = a* cosh( (3-b)/a ) - M;
    e3 = a*sinh( (3-b)/a ) - a*sinh((-3-b)/a) - 10;
    J = e1^2 + e2^2 + e3^2;
    end
```

Solve using fminsearch()

```
>> [z,e] = fminsearch('cost4',10*rand(1,3))
z = 1.7201 0.5324 3.8152
e = 9.6149e-009
```

The sum squared error is almost zero. This is a valid answer
ans: $y=1.7201 \cosh \left(\frac{x-0.5324}{1.7201}\right)-3.8152$
$x=[-3: 0.01: 3]^{\prime} ;$
$a=z(1) ;$
$b=z(2) ;$
M = z(3);
$y=a^{*} \cosh ((x-b) / a)-M$;
plot (x,y);
Plotting in Matlab:

Hanging chain of 10 m length connecting points $(-3,3)$ and $(+3,0)$
5) Determine $x(t)$ which minimizes the following functional:

$$
J=\int_{0}^{2}\left(x^{2}+5 \dot{x}^{2}\right) d t
$$

subject to the constraints:

$$
\begin{aligned}
& x(0)=2 \\
& x(2)=0
\end{aligned}
$$

Plug into the Euler LaGrange equation

$$
\begin{aligned}
& F=x^{2}+5 \dot{x}^{2} \\
& F_{x}-\frac{d}{d t}\left(F_{\dot{x}}\right)=0 \\
& 2 x-\frac{d}{d t}(10 \dot{x})=0 \\
& 2 x-10 \ddot{x}=0
\end{aligned}
$$

Assume all functions are in the form of $\exp (s t)$

$$
\begin{aligned}
& 2 x-10 s^{2} x=0 \\
& \left(5 s^{2}-1\right) x=0
\end{aligned}
$$

Either

- $\mathrm{x}=0$ (trivial solution), or
- $\mathrm{S}= \pm \sqrt{\frac{1}{5}}$

So

$$
x(t)=a \cdot e^{0.4472 t}+b \cdot e^{-0.4472 t}
$$

Plug in the two endpoints

$$
\begin{aligned}
& x(0)=2=a+b \\
& x(2)=0=a \cdot e^{0.8944}+b \cdot e^{-0.8944}
\end{aligned}
$$

Solving

```
X = [1,1; exp(0.8944),exp(-0.8944)]
```

$$
\begin{array}{ll}
1.0000 & 1.0000 \\
2.4459 & 0.4089
\end{array}
$$

$$
\operatorname{inv}(X) *[2 ; 0]
$$

$$
x(\mathrm{t})=-0.4014 \cdot \mathrm{e}^{0.4472 \mathrm{t}}+2.4014 \cdot \mathrm{e}^{-0.4472 \mathrm{t}}
$$

Plotting in Matlab:

```
t = [0:0.01:2]';
x = -0.4014* exp(0.4472*t) + 2.4014* exp(-0.4472*t);
plot(t,x);
```


6) Determine $x(t)$ which minimizes the following functional:

$$
J=\int_{0}^{5}\left(x^{2}+5 u^{2}\right) d t
$$

subject to the constraints:

$$
\begin{aligned}
& \dot{x}=-0.1 x+u \\
& x(0)=2 \\
& x(2)=0
\end{aligned}
$$

Set up the functional with a LaGrange multiplier:

$$
F=x^{2}+5 u^{2}+M(\dot{x}+0.1 x-u)
$$

Solve the three Euler LaGrange equations:

$$
\begin{aligned}
& F_{x}-\frac{d}{d t}\left(F_{\dot{x}}\right)=0 \\
& F_{u}-\frac{d}{d t}\left(F_{\dot{u}}\right)=0
\end{aligned}
$$

$$
F_{M}-\frac{d}{d t}\left(F_{\dot{M}}\right)=0
$$

i) $\quad F_{x}-\frac{d}{d t}\left(F_{\dot{x}}\right)=0$
$(2 x+0.1 M)-\frac{d}{d t}(M)=0$
$2 x+0.1 M-\dot{M}=0$
ii) $\quad F_{u}-\frac{d}{d t}\left(F_{\dot{u}}\right)=0$
$10 u-M=0$
iii) $\quad F_{M}-\frac{d}{d t}\left(F_{\dot{M}}\right)=0$
$\dot{x}+0.1 x-u=0$

Start with equation ii)
$M=10 u$
$\dot{\mathrm{M}}=10 \dot{\mathrm{u}}$

Substitute in to i)

$$
2 x+u-10 \dot{u}=0
$$

From iii)

$$
\begin{aligned}
& \dot{x}+0.1 x-u=0 \\
& u=\dot{x}+0.1 x \\
& \dot{u}=\ddot{x}+0.1 \dot{x}
\end{aligned}
$$

Substitute

$$
\begin{aligned}
& 2 x+u-10 \dot{u}=0 \\
& 2 x+(\dot{x}+0.1 x)-10(\ddot{x}+0.1 \dot{x})=0 \\
& -10 \ddot{x}+2.1 x=0 \\
& \left(s^{2}-0.21\right) x=0
\end{aligned}
$$

Either

$$
\begin{aligned}
& \mathrm{x}=0 \text { (trivial solution), or } \\
& \mathrm{S}= \pm 0.4583
\end{aligned}
$$

$$
x(t)=a \cdot e^{0.4583 t}+b \cdot e^{-0.4583 t}
$$

Plug in the endpoints

$$
\begin{aligned}
& x(0)=2=a+b \\
& x(1)=0=a \cdot e^{0.9165}+b \cdot e^{-0.9165}
\end{aligned}
$$

Solving

```
A = [1,1 ; exp(0.9165), exp(-0.9165)]
    1.0000 1.0000
    2.5005 0.3999
ab = inv(A)*[2;0]
a -0.3808
b 2.3808
```

ans:

$$
x(t)=-0.3808 \cdot e^{0.4583 t}+2.3808 \cdot e^{-0.4583 t}
$$

optimal path for $\mathrm{x}(\mathrm{t})$

LQG Control

7) Cart and Pendulum (HW \#5): Design a full-state feedback control law of the form

$$
\mathrm{U}=\mathrm{KrR}-\mathrm{KxX}
$$

for the cart and pendulum system from homework \#5 using LQG control so that

- The DC gain is 1.00
- The 2% settling time is 8 seconds, and
- There is less than 10% overshoot for a step input.

Compare your results with homework \#5

```
Kx = lqr(A, B, diag([1,0,0,0]), 1);
eig(A-B*Kx)
    -5.4218 + 0.0615i
    -5.4218 - 0.0615i
    -0.4129 + 0.4036i too slow
    -0.4129 - 0.4036i
>> Kx = lqr(A, B, diag([3,0,0,0]), 1);
>> eig(A-B*Kx)
    -5.4211 + 0.1065i
    -5.4211 - 0.1065i
    -0.5477 + 0.5266i fast enough
    -0.5477 - 0.5266i
>> DC = -C*inv(A - B*Kx)*B
DC = -0.5774
>> Kr = 1/DC
Kr = -1.7321
>> G = ss(A-B*Kx, B*Kr, Cxq, D);
>> y = step(G, t);
>> plot(t,y);
```


Homework \#5: Pole Placement
Pole Location
$[-0.5+j * 0.682,-0.5-j * 0.682,-2,-3]$
Gains

$$
\begin{aligned}
& K x=\operatorname{ppl}(A, B,[-0.5+j * 0.682,-0.5-j * 0.682,-2,-3]) \\
& K x=-0.4378-41.5530-0.9771-6.9771
\end{aligned}
$$

LQR

Pole Location

$$
\begin{aligned}
& \text { eig(A-B*Kx) } \\
& \quad-5.4211+0.1065 i \\
& -5.4211-0.1065 i \\
& -0.5477+0.5266 i \\
& -0.5477-0.5266 i
\end{aligned}
$$

Gains

```
>> Kx = lqr(A, B, diag([3,0,0,0]), 1)
Kx = - -1.7321 -72.9869 -3.9252 -15.8629
```

8) Ball and Beam (HW \#5): Design a full-state feedback control law of the form

$$
\mathrm{U}=\mathrm{KrR}-\mathrm{KxX}
$$

for the ball and beam system from homework \#6 using LQG control so that

- The DC gain is 1.00
- The 2% settling time is 8 seconds, and
- There is less than 10% overshoot for a step input.

Controller Design:

```
>> A = [0,0,1,0;0,0,0,1;0,-7,0,0;-3.27,0,0,0]
>> B = [0;0;0;0.33]
Kx = lqr(A, B, diag([1,100000,0,0]), 1);
DC = -C*inv(A - B*KX)*B;
Kr = 1/DC;
G = ss(A-B*Kx, B*Kr, Cxq, D);
y = step(G, t);
plot(t,y);
```

Adjust Q until the step response looks good

```
Kx = -19.8685 30.5309 -9.3208 13.6028
Kr = -9.9594
closed-loop poles
    -7.2158 + 7.2158i
    -7.2158 - 7.2158i
    -0.3324 + 0.3324i
    -0.3324 - 0.3324i
```

Comparing to homework \#5

```
Kx = -11.6501 35.1489 -4.1042 18.0018
Kr = -1.8391
closed-loop poles
-0.5 + j*0.682
-0.5-j*0.682
-2
-3
```


Closed-Loop Step Respons of Ball \& Beam System

