
ECE 463/663 - Homework #8
Calculus of Variations.  Due Monday, April 1, 2019

Note:  If there is no solution to a problem, explain why this is so.

1)  Determine the shape of a soap film connecting two rings around the X-axis subject to the constaint
y(0) = 5
y(3) = 4

The general solution is of the form

y = a cosh ⎛⎝
x−b

a
⎞
⎠

Plug in the endpoints to get two equations for two unknowns

5 = a cosh ⎛⎝
−b
a
⎞
⎠

4 = a cosh ⎛⎝
3−b

a
⎞
⎠

Solving in Matlab.  Create a cost function

function [ J ] = cost( z )
 
   a = z(1);
   b = z(2);
 
   e1 = a*cosh(b/a) - 5;
   e2 = a*cosh( (3-b)/a ) - 4;
   
   J = e1.^2 + e2.^2;
   
   end

Solve using fminsearch()
>> [z,e] = fminsearch('cost',[1,2])

z =
      a         b
    0.5323    1.5598

e =

  3.8330e-008

The sum-squared error (b) is closed to zero, so

ans: y = 0.5233 cosh ⎛⎝
x−1.5598
0.5323

⎞
⎠

Plotting in Matlab



>> x = [0:0.001:3]';
>> y = 0.5323*cosh( (x-1.5598)/0.5323 );
>> plot(x,y,x,-y);
>> 

Shape of soap film rotated about the X axis



2)  Determine the shape of a soap film connecting two rings around the X-axis subject to the constaint
y(0) = 5
y(10) = 4

Change the cost function

function [ J ] = cost( z )
 
   a = z(1);
   b = z(2);
 
   e1 = a*cosh(b/a) - 5;
   e2 = a*cosh( (10-b)/a ) - 4;
   
   J = e1.^2 + e2.^2;
   
   end

Solve in Matlab

>> [z,e] = fminsearch('cost',[1,2])

z =
       a        b
    4.1646    5.2092

e =

   18.7205

The sum-squared error is not zero - fmsearch() cannot find a solution.

Turns out there is no solution.  The soap film breaks if the two endpoints are too far apart (they were close
to breaking in problem #1)

ans: No Solution



3) Calculate the shape of a soap film connecting two rings around the X axis:
Y(0) = 5
Y(2) = free

The general solution is of the form

y = a cosh ⎛⎝
x−b

a
⎞
⎠

The left endpoint gives

5 = a cosh ⎛⎝
b
a
⎞
⎠

The right endpoint gives

y. = sinh ⎛⎝
x−b
a
⎞
⎠ = 0

sinh ⎛⎝
2−b

a
⎞
⎠ = 0

b = 2

Solving in Matlab

function [ J ] = cost4( z )
 
   a = z(1);
   b = 2;
    
   e1 = a*cosh( b/a ) - 5;
     
   J = e1^2;
   
   end

[a,e] = fminsearch('cost4',1)

a =  0.7898

e =  9.1019e-008

So

y = 0.7898 cosh ⎛⎝
x−2

0.7898
⎞
⎠



x = [0:0.01:4]';
a =  z;
b = 2;
y = a*cosh((x-b)/a);
plot(x,y);
plot([2,2],[0,5],'r--')
plot(x,y,'b',[2,2],[0,5],'r--')

 



4)  Determine the shape of a hanging chain with gravity in the -y direction.  Assume the chain is 10 meters
long hanging between two points:

Left end: x = -3 y = 3
Right end: x = +3 y = 0

Solution (from lecture notes)

y = a cosh ⎛⎝
x−b

a
⎞
⎠ −M

To solve, you need three equations for three unknowns.  Use the two endpoints:

(1) 3 = a cosh ⎛⎝
−3−b

a
⎞
⎠ −M

(2) 0 = a cosh ⎛⎝
3−b

a
⎞
⎠ − M

The third constraint is the length:

⎛
⎝a sinh ⎛⎝

x−b
a
⎞
⎠
⎞
⎠ x0

x1

= L

(3) a sinh ⎛⎝
3−b

a
⎞
⎠ − a sinh ⎛⎝

−3−b
a
⎞
⎠ = 10

Solve in Matlab.  Set up a cost function

function [ J ] = cost4( z )
 
   a = z(1);
   b = z(2);
   M = z(3);
 
   e1 = a*cosh( (-3-b)/a ) - M - 3;
   e2 = a*cosh( (3-b)/a  ) - M;
   e3 = a*sinh( (3-b)/a ) - a*sinh((-3-b)/a) - 10;
   
   J = e1^2 + e2^2 + e3^2;
   
   end

Solve using fminsearch()

>> [z,e] = fminsearch('cost4',10*rand(1,3))

z =    1.7201    0.5324    3.8152

e =  9.6149e-009

The sum squared error is almost zero.  This is a valid answer

ans: y = 1.7201 cosh ⎛⎝
x−0.5324
1.7201

⎞
⎠ − 3.8152



x = [-3:0.01:3]';
a = z(1);
b = z(2);
M = z(3);
y = a*cosh((x-b)/a) - M;
plot(x,y);

Plotting in Matlab:

Hanging chain of 10m length connecting points (-3,3) and (+3, 0)



5)  Determine x(t) which minimizes the following functional:

J = ∫0

2
(x2 + 5x

. 2)dt

subject to the constraints:

x(0) = 2

x(2) = 0

Plug into the Euler LaGrange equation

F = x2 + 5x
. 2

Fx − d
dt
(Fx

. ) = 0

2x − d
dt
(10x

.
) = 0

2x − 10ẍ = 0

Assume all functions are in the form of exp(st)

2x − 10s2x = 0

(5s2 − 1)x = 0

Either
x = 0 (trivial solution), or

s = ± 1
5

So

x(t) = a ⋅ e0.4472t + b ⋅ e−0.4472t

Plug in the two endpoints

x(0) = 2 = a + b

x(2) = 0 = a ⋅ e0.8944 + b ⋅ e−0.8944

Solving
X = [1,1; exp(0.8944),exp(-0.8944)]

    1.0000    1.0000
    2.4459    0.4089

inv(X)*[2;0]



a   -0.4014
b    2.4014

x(t) = −0.4014 ⋅ e0.4472t + 2.4014 ⋅ e−0.4472t

Plotting in Matlab:

t = [0:0.01:2]';
x = -0.4014*exp(0.4472*t) + 2.4014*exp(-0.4472*t);
plot(t,x);



6)  Determine x(t) which minimizes the following functional:

J = ∫0

5
(x2 + 5u2)dt

subject to the constraints:

 x
.
= −0.1x + u

x(0) = 2

x(2) = 0

Set up the functional with a LaGrange multiplier:

F = x2 + 5u2 +M(x
.
+ 0.1x − u)

Solve the three Euler LaGrange equations:

Fx − d
dt
(Fx

. ) = 0

Fu − d
dt(Fu

. ) = 0

FM − d
dt(FM

. ) = 0

i) Fx − d
dt(Fx

. ) = 0

(2x + 0.1M) − d
dt
(M) = 0

2x + 0.1M −M
.
= 0

ii) Fu − d
dt
(Fu

. ) = 0

10u −M = 0

iii) FM − d
dt(FM

. ) = 0

x
.
+ 0.1x − u = 0

Start with equation ii)

M = 10u

M
.
= 10u

.



Substitute in to i)

2x + u − 10u
.
= 0

From iii)

x
.
+ 0.1x − u = 0

u = x
.
+ 0.1x

u
.
= ẍ + 0.1x

.

Substitute

2x + u − 10u
.
= 0

2x + (x
.
+ 0.1x) − 10(ẍ + 0.1x

.
) = 0

−10ẍ + 2.1x = 0

(s2 − 0.21)x = 0

Either

x = 0 (trivial solution), or

s = ±0.4583

x(t) = a ⋅ e0.4583t + b ⋅ e−0.4583t

Plug in the endpoints

x(0) = 2 = a + b

x(1) = 0 = a ⋅ e0.9165 + b ⋅ e−0.9165

Solving

A = [1,1 ; exp(0.9165),exp(-0.9165)]

    1.0000    1.0000
    2.5005    0.3999

ab = inv(A)*[2;0]

a   -0.3808
b    2.3808

ans:

x(t) = −0.3808 ⋅ e0.4583t + 2.3808 ⋅ e−0.4583t



optimal path for x(t)



LQG Control

7) Cart and Pendulum (HW #5): Design a full-state feedback control law of the form

U = KrR - KxX

for the cart and pendulum system from homework #5 using LQG control so that
The DC gain is 1.00
The 2% settling time is 8 seconds, and
There is less than 10% overshoot for a step input.

Compare your results with homework #5

Kx = lqr(A, B, diag([1,0,0,0]), 1);
eig(A-B*Kx)

  -5.4218 + 0.0615i
  -5.4218 - 0.0615i
  -0.4129 + 0.4036i  too slow
  -0.4129 - 0.4036i

>> Kx = lqr(A, B, diag([3,0,0,0]), 1);
>> eig(A-B*Kx)

  -5.4211 + 0.1065i
  -5.4211 - 0.1065i
  -0.5477 + 0.5266i fast enough
  -0.5477 - 0.5266i

>> DC = -C*inv(A - B*Kx)*B

DC =   -0.5774

>> Kr = 1/DC

Kr =   -1.7321

>> G = ss(A-B*Kx, B*Kr, Cxq, D);
>> y = step(G, t);
>> plot(t,y);



Homework #5: Pole Placement

Pole Location
[-0.5 + j*0.682, -0.5-j*0.682, -2, -3]

Gains
Kx = ppl(A, B, [-0.5 + j*0.682, -0.5-j*0.682, -2, -3])

Kx =   -0.4378  -41.5530   -0.9771   -6.9771

LQR

Pole Location
eig(A-B*Kx)

  -5.4211 + 0.1065i
  -5.4211 - 0.1065i
  -0.5477 + 0.5266i
  -0.5477 - 0.5266i

Gains
>> Kx = lqr(A, B, diag([3,0,0,0]), 1)

Kx =   -1.7321  -72.9869   -3.9252  -15.8629



8) Ball and Beam (HW #5): Design a full-state feedback control law of the form

U = KrR - KxX

for the ball and beam system from homework #6 using LQG control so that
The DC gain is 1.00
The 2% settling time is 8 seconds, and
There is less than 10% overshoot for a step input.

Controller Design:
>> A = [0,0,1,0;0,0,0,1;0,-7,0,0;-3.27,0,0,0]
>> B = [0;0;0;0.33]

Kx = lqr(A, B, diag([1,100000,0,0]), 1);
DC = -C*inv(A - B*Kx)*B;
Kr = 1/DC;
G = ss(A-B*Kx, B*Kr, Cxq, D);
y = step(G, t);
plot(t,y);

Adjust Q until the step response looks good

Kx =  -19.8685   30.5309   -9.3208   13.6028

Kr =   -9.9594

closed-loop poles

  -7.2158 + 7.2158i
  -7.2158 - 7.2158i
  -0.3324 + 0.3324i
  -0.3324 - 0.3324i

Comparing to homework #5

Kx = -11.6501 35.1489 -4.1042 18.0018
Kr = -1.8391

closed-loop poles
-0.5 + j*0.682
-0.5-j*0.682
-2
-3



Closed-Loop Step Respons of Ball & Beam System


