## ECE 463/663 - Test \#3: Name

Friday, April 26th Closed Book, Closed Notes. Calculators Permitted
Euler LeGrange Equation: $F_{y}-\frac{d}{d t}\left(F_{\dot{y}}\right)=0$

1) Determine the function, $\mathrm{y}(\mathrm{t})$, which minimizes the following funcitonal:

$$
J=\int_{0}^{10}\left(9 y^{2}+\dot{y}^{2}\right) d t
$$

subject to the constraint

$$
\begin{aligned}
& y(0)=1 \\
& y(10)=0
\end{aligned}
$$

2) Determine the function, $y(t)$, which minimizes the following funcitonal:

$$
J=\int_{0}^{2}\left(9 y^{2}+u^{2}\right) d t
$$

subject to the constraints

$$
y(0)=1 \quad y(10)=0 \quad \dot{y}-2 y=u
$$

2a) Solve the following Euler LeGrange equation

$$
F=\left(9 y^{2}+u^{2}\right)+m(\dot{y}-2 y-u)
$$

$$
F_{y}-\frac{d}{d t}\left(F_{\dot{y}}\right)=0
$$

2b) Solve the following Euler LeGrange equation

$$
\begin{aligned}
& F=\left(9 y^{2}+u^{2}\right)+m(\dot{y}-2 y-u) \\
& F_{u}-\frac{d}{d t}\left(F_{\dot{u}}\right)=0
\end{aligned}
$$

2c) Solve the following Euler LeGrange equation

$$
\begin{aligned}
& F=\left(9 y^{2}+u^{2}\right)+m(\dot{y}-2 y-u) \\
& F_{m}-\frac{d}{d t}\left(F_{\dot{m}}\right)=0
\end{aligned}
$$

2d) Solve for $y(t)$ given the endpoint constraints:

$$
\begin{aligned}
& y(0)=1 \\
& y(10)=0
\end{aligned}
$$

3) A road is to be built between two points, A and B. The cost per mile to build the road is proportional to the square of the distance from they axis:

$$
\begin{aligned}
& J=\int_{a}^{b}\left(x^{2} \sqrt{1+\dot{y}^{2}}\right) d x \\
& F_{y}-\frac{d}{d x}\left(F_{\dot{y}}\right)=0
\end{aligned}
$$

Find the differential equation which describes the optimal path for the road. (You don't need to solve for $\mathrm{y}(\mathrm{x})$, just give the differential equation that y must satisfy.)
4) Express the following system in state-space form



