ECE 463/663 - Homework \#8

Calculus of Variations. LQG Control. Due Monday, April 6th

Soap Film

1) Calculate the shape of a soap film connecting two rings around the X axis:

- $\mathrm{Y}(0)=10$
- $Y(5)=10$

From the lecture notes, the surface area of a soap film is

$$
J=\int y \sqrt{1+\dot{y}^{2}} d x
$$

The minimum comes from the Euler LeGrange equation, resulting in

$$
y=a \cosh \left(\frac{x-b}{a}\right)
$$

Plugging in the two end points

$$
\begin{aligned}
& y(0)=10=a \cosh \left(\frac{b}{a}\right) \\
& y(5)=10=a \cosh \left(\frac{5-b}{a}\right)
\end{aligned}
$$

Solve two equations for two unknowns. Create a function in Matlab

```
function [ J ] = cost_soap( z )
    a = z(1);
    b = z(2);
    e1 = a * cosh(b/a) - 10;
    e2 = a * cosh((5-b)/a) - 10;
    J = e1^2 + e2^2;
    end
```

Call it using fminsearch

```
>> [z,e] = fminsearch('cost_soap',[1,2])
Z = ccc
e = 3.0488e-006
    y=0.7670 cosh (\frac{x-2.5}{0.7670})
>>
```


2) Calculate the shape of a soap film connecting two rings around the X axis:

- $\mathrm{Y}(0)=10$
- $Y(2)=$ free

This results in

$$
\begin{aligned}
& y=a \cosh \left(\frac{x-b}{a}\right) \\
& y(0)=10=a \cosh \left(\frac{b}{a}\right)
\end{aligned}
$$

The constraint at the right endpoint is

$$
\begin{aligned}
& y^{\prime}=0=\sinh \left(\frac{x-b}{a}\right) \\
& y^{\prime}(2)=0=\sinh \left(\frac{2-b}{a}\right)
\end{aligned}
$$

Setting up a cost function in matlab

```
function [ J ] = cost_soap( z )
    a = z(1);
    b = z(2);
    e1 = a * cosh(b/a) - 10;
    e2 = sinh((2-b)/a);
    J = e1^2 + e2^2;
    end
```

Solving

```
>> [Z,e] = fminsearch('cost_soap',[1,2])
z= 0.5593 2.0000
e = 5.6278e-009
```

resulting in

$$
y=0.5593 \cosh \left(\frac{x-2}{0.5593}\right)
$$

Hanging Chain

3) Calculate the shape of a hanging chain subject to the following constraints

- Length of chain $=11$ meters
- Left Endpoint: $(0,5)$
- Right Endpoint: $(10,5)$

The functional is

$$
F=x \sqrt{1+\dot{y}^{2}} d x+M \sqrt{1+\dot{y}^{2}}
$$

which has the solution of

$$
y=a \cosh \left(\frac{x-b}{a}\right)-M
$$

along with the constraint

$$
\left(a \sinh \left(\frac{x-b}{a}\right)\right)_{0}^{10}=L
$$

This gives three equations and three unknowns:

$$
\begin{aligned}
& y(0)=5=a \cosh \left(\frac{0-b}{a}\right)-M \\
& y(10)=5=a \cosh \left(\frac{10-b}{a}\right)-M \\
& a \sinh \left(\frac{10-b}{a}\right)-a \sinh \left(\frac{0-b}{a}\right)=11
\end{aligned}
$$

Solving in Matlab

```
function [ J ] = cost_chain( z )
    a = z(1);
    b = z(2);
    M = z(3);
    e1 = a * cosh(b/a) - M - 5;
    e2 = a * cosh((10-b)/a) - M - 5;
    e3 = a*sinh((10-b)/a) - a*sinh((0-b)/a) - 11;
    J = e1^2 + e2^2 + e3^2;
    end
```

```
>> [Z,e] = fminsearch('cost_chain',[1,2,3])
a b M
Z = 6.5497 5.0000 3.5527
e = 2.6083e-010
```

meaning

$$
y=6.5497 \cosh \left(\frac{x-5}{6.5497}\right)-3.5527
$$

Ricatti Equation

4) Find the function, $x(t)$, which minimizes the following funcional

$$
\begin{aligned}
& J=\int_{0}^{8}\left(x^{2}+100 \dot{x}^{2}\right) d t \\
& x(0)=5 \\
& x(8)=4
\end{aligned}
$$

$$
F=x^{2}+100 \dot{x}^{2}
$$

The Euler LeGrange equation is

$$
\begin{aligned}
& \frac{d}{d t}\left(F_{\dot{x}}\right)-F_{x}=0 \\
& \frac{d}{d t}(200 \dot{x})-(2 x)=0 \\
& 100 \ddot{x}-x=0 \\
& \left(100 s^{2}-1\right) x=0
\end{aligned}
$$

Either

- $\mathrm{x}=0$ trivial solution
- $\mathrm{s}=+/-0.1$

$$
x(t)=a e^{0.1 t}+b e^{-0.1 t}
$$

Plugging in the endpoints

$$
\begin{aligned}
& x(0)=5=a+b \\
& x(8)=4=2.2255 a+0.4493 b
\end{aligned}
$$

solving

$$
\begin{aligned}
& a=0.9871 \\
& b=4.0129
\end{aligned}
$$

and

$$
x(t)=0.9871 e^{0.1 t}+4.0129 e^{-0.1 t}
$$

5) Find the function, $x(t)$, which minimizes the following funcional

$$
\begin{aligned}
& J=\int_{0}^{8}\left(x^{2}+25 u^{2}\right) d t \\
& \dot{x}=-0.2 x+u \\
& x(0)=5 \\
& x(8)=4
\end{aligned}
$$

The funcitonal is

$$
F=x^{2}+25 u^{2}+m(\dot{x}+0.2 x-u)
$$

Solving three sets of Euler LeGrange equations

$$
\begin{aligned}
& \frac{d}{d t}\left(F_{\dot{x}}\right)-F_{x}=0 \\
& \frac{d}{d t}(m)-(2 x+0.2 m)=0 \\
& \dot{m}=2 x+0.2 m \\
& \frac{d}{d t}\left(F_{\dot{u}}\right)-F_{u}=0 \\
& \frac{d}{d t}(0)-(50 u-m)=0 \\
& m=50 u \\
& \frac{d}{d t}\left(F_{\dot{m}}\right)-F_{m}=0 \\
& \frac{d}{d t}(0)-(\dot{x}+0.2 x-u)=0 \\
& u=\dot{x}+0.2 x
\end{aligned}
$$

Solving

$$
\begin{aligned}
& \dot{m}=50 \dot{u} \\
& \dot{m}=2 x+0.2 m \\
& 50 \dot{u}=2 x+0.2(50 u) \\
& 50(\ddot{x}+0.2 \dot{x})=2 x+10(\dot{x}+0.2 x) \\
& 50 \ddot{x}-4 x=0
\end{aligned}
$$

$\left(50 s^{2}-4\right) X=0$

$$
s= \pm 0.2828
$$

So

$$
x(t)=a e^{0.2828 t}+b e^{-0.2828 t}
$$

Plugging in the endpoints

$$
\begin{aligned}
& x(0)=5=a+b \\
& x(8)=4=9.6061 a+0.1041 b \\
& a=0.3662 \\
& b=4.6338
\end{aligned}
$$

and

$$
x(t)=0.3662 e^{0.2828 t}+4.6338 e^{-0.2828 t}
$$

Optimal path from $(0,5)$ to $(8,4)$

LQG Control

6) Cart and Pendulum (HW \#5): Design a full-state feedback control law of the form

$$
U=K_{r} R-K_{x} X
$$

for the cart and pendulum system from homework \#5 using LQG control so that

- The DC gain is 1.00
- The 2% settling time is 6 seconds, and
- There is less than 10% overshoot for a step input.

Compare your results with homework \#5

- Where are the closed-loop poles with pole placement and with LQG control?
- Are the feedback gains larger or smaller with LQG control?
- Which one works better?

In Matlab:

```
A = [0,0,1,0;0,0,0,1;0,-6.5333,0,0;0,16.333,0,0];
B = [0;0;0.333;-0.333];
C = [1,0,0,0];
t = [0:0.05:10]';
Gd= zpk([],[-0.666+j*0.91,-0.666-j*0.91],1.2717);
yd = step(Gd,t);
Qx = C'*C;
Qv = (C*A)'* (C*A);
Kx = lqr(A, B, 1*Qx + 0*Qv, 1);
DC = -C*inv(A-B*Kx)*B;
y = step3(A-B*Kx, B*Kr, C, 0, t, X0, 0*t+1);
plot(t,yd,'r',t,y,'b');
```

time passes...

```
Kx = lqr(A, B, 200*Qx + 0*Qv, 1);
DC = -C*inv(A-B*Kx)*B;
Kr = 1/DC;
Y = step3(A-B*Kx, B*Kr, C, 0, t, X0, 0*t+1);
plot(t,yd,'r',t,y,'b');
Kx = -14.1421 -181.0162 -19.5164 -51.1747
Kr = -14.1421
eig(A-B*Kx)
    -4.0070 + 0.2326i
    -4.0070 - 0.2326i
    -1.2642 + 1.1255i
    -1.2642 - 1.1255i
```


7) Ball and Beam (HW \#5): Design a full-state feedback control law of the form

$$
U=K_{r} R-K_{x} X
$$

for the ball and beam system from homework \#6 using LQG control so that

- The DC gain is 1.00
- The 2% settling time is 6 seconds, and
- There is less than 10% overshoot for a step input.

```
A = [0,0,1,0;0,0,0,1;0,-7,0,0;-7.84,0,0,0];
B = [0;0;0;0.4];
C = [1,0,0,0];
```

Guess Q until the step response looks good

```
Kx = lqr(A, B, diag([10,10,10,1000]), 1);
DC = -C*inv(A-B*Kx)*B;
Kr = 1/DC;
Y = step3(A-B*Kx, B*Kr, C, 0, t, X0, 0*t+1);
plot(t,yd,'r',t,y,'b');
Kx = - -39.4535 112.9368 -25.5073 39.5561
Kr = -19.8535
eig(A-B*Kx)
    -12.6758
    -0.7939 + 1.4775i
    -0.7939 - 1.4775i
    -1.5589
>>
```


