ECE 463/663 - Homework \#9

LQG Control with Servo Compensators. Due Wednesday, April 15th

LQG Control

Cart and Pendulum (HW \#5): Use LQG methods to design a full-state feedback control law of the form

$$
\begin{aligned}
& U=-K_{z} Z-K_{x} X \\
& \dot{Z}=(x-R)
\end{aligned}
$$

for the cart and pendulum system from homework \#5 using LQG control so that

- You track constant setpoints,
- You reject constant disturbances,
- The 2% settling time is 4 seconds, and
- There is no overshoot for a step input.

1) Give the control law (Kx and Kz) and explain how you chose Q and R

Create the augmented system (plant plus servo compensator - same as homework \#6)

The plant plus servo compensator

$$
s\left[\begin{array}{c}
x \\
\theta \\
\dot{x} \\
\dot{\theta} \\
z
\end{array}\right]=\left[\begin{array}{ccccc}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & -6.533 & 0 & 0 & 0 \\
0 & 16.333 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
\theta \\
\dot{x} \\
\dot{\theta} \\
z
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
0.333 \\
-0.333 \\
0
\end{array}\right] F+\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
-1
\end{array}\right] R
$$

Now use LQR methods to force the system to behave like

$$
G_{d}=\left(\frac{1}{s^{2}+2 s+1}\right)
$$

```
A5 = [A, zeros(4,1) ; C, 0]
\begin{tabular}{rrrrr}
0 & 0 & 1.0000 & 0 & 0 \\
0 & 0 & 0 & 1.0000 & 0 \\
0 & -7.0000 & 0 & 0 & 0 \\
-7.8400 & 0 & 0 & 0 & 0 \\
1.0000 & 0 & 0 & 0 & 0
\end{tabular}
B5u = [B; 0];
B5r = [0*B ; -1];
C5 = [C, 0];
D5 = 0;
t = [0:0.01:10]';
Gd = tf(1,[1,2,1]);
Yd = step(Gd,t);
```

After some trial and error, a reasonable Q and R were:

```
K5 = lqr(A5, B5u, diag([100,0,0,0,100]),1);
Y = step3(A5-B5u*K5, B5r, C5, D5, t, X0, Ref);
plot(t,Y,'b',t,Yd,'r');
```


so the resulting feedback gains are:

```
K5 = -24.8289 -204.2766 -25.8237 -58.6530 -10.0000
>> eig(A5-B5u*K5)
ans =
    -4.0250 + 0.1594i
    -4.0250 - 0.1594i
    -0.9166
    -0.9827 + 1.1083i
    -0.9827 - 1.1083i
```

2) Plot the step response of the linear system see problem \#1 done while itterating to find Q and R
3) Check your design with the nonlinear simulation of the cart and pendulum system.

```
% Cart and Pendulum (sp20 version)
X = [-1; 0 ; 0 ; 0];
dX = zeros(4,1);
Ref = 1;
dt = 0.01;
U = 0;
t = 0;
Kx = [ -24.8289 -204.2766 -25.8237 -58.6530];
Kz = -10;
Z = 0;
y = [];
while(t < 20)
    Ref = sign(sin(0.1*pi*t));
    U = -Kz*Z - Kx*X;
    dX = CartDynamics(X, U);
    dZ = X(1) - Ref;
    X = X + dX * dt;
    Z = Z + dZ * dt;
    t = t + dt;
    CartDisplay(X, Ref);
    y = [y; X(1), Ref];
end
clf
t = [1:length(y)]' * 0.01;
plot(t, y);
```

Ball and Beam (HW \#6): Use LQG methods to design a full-state feedback control law of the form

$$
\begin{aligned}
& U=-K_{z} Z-K_{x} X \\
& \dot{Z}=(x-R)
\end{aligned}
$$

for the ball and beam system from homework \#5 using LQG control so that

- You track constant setpoints,
- You reject constant disturbances,
- The 2% settling time is 4 seconds, and
- There is no overshoot for a step input.

4) Give the control law (Kx and Kx) and explain how you chose Q and R

The augmented system in this case is

$$
s\left[\begin{array}{c}
x \\
\theta \\
\dot{x} \\
\dot{\theta} \\
\cdots \\
z
\end{array}\right]=\left[\begin{array}{cccccc}
0 & 0 & 1 & 0 & \vdots & 0 \\
0 & 0 & 0 & 1 & \vdots & 0 \\
0 & -7 & 0 & 0 & \vdots & 0 \\
-7.84 & 0 & 0 & 0 & \vdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
1 & 0 & 0 & 0 & \vdots & 0
\end{array}\right]\left[\begin{array}{c}
x \\
\theta \\
\dot{x} \\
\dot{\theta} \\
\cdots \\
z
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
0 \\
0.4 \\
0
\end{array}\right] U+\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
\\
-1
\end{array}\right] R
$$

Repeating the previous trial-and-error for guessing Q to find a 'good' response

```
K5 = lqr(A5, B5, diag([100,0,100,100,300]),1);
y = step3(A5-B5*K5, B5r, C5, D5, t, X0, Ref);
plot(t,y,'b',t,Yd,'r');
eig(A5-B5*K5)
K5 = - -59.6985 93.4079 -32.4393 23.8126 -17.3205
eig(A5-B5*K5)
    -4.7115
    -1.1838 + 2.4747i
    -1.1838 - 2.4747i
    -1.5806
    -0.8654
```

5) Plot the step response of the linear system

6) Check your design with the nonlinear simulation of the cart and pendulum system.

Code:

```
% Ball & Beam System
% Sp 20 Version
% m = 2kg
% J = 0.5 kg m^2
X = [0, 0, 0, 0]';
dt = 0.01;
t = 0;
Kx = [l-59.6985 93.4079 -32.4393 23.8126 ];
Kz = [ -17.3205];
Z = 0;
y = [];
while(t < 20)
    Ref = 1 * (sin(2*pi*t/20) > 0);
    U = -Kz*Z - Kx*X;
    dX = BeamDynamics(X, U);
    dZ = (X(1) - Ref);
    X = X + dX * dt;
    Z = Z + dZ * dt;
    y = [y ; Ref, X(1)];
    t = t + dt;
    BeamDisplay(X, Ref);
    end
t = [1:length(y)]' * dt;
plot(t,y(:,1),'r',t,y(:, 2),'b');
xlabel('Time (seconds)');
ylabel('Ball Position');
```

