ECE 463/663 - Test \#3: Name

Calculus of Variations. Optimal Control. Spring 2020
Open Book, Open Notes. Calculators, Matlab, Internet all permitted - just not other people.
Please sign if possible (i.e. you worked alone):
No Aid Given Received Observerd: \qquad

Calculus of Variations: Fixed endpoints

1) Find the function which minimizes the following funcitonal:

$$
J=\int_{0}^{2}\left(2 x^{2}+3 \dot{x}^{2}\right) d t
$$

subject to the constraints

$$
\begin{aligned}
& x(0)=6 \\
& x(8)=4
\end{aligned}
$$

2) Calculus of Variations: Free Endpoint. Find the function which minimizes the following funcitonal:

$$
J=\int_{0}^{2}\left(2 x^{2}+3 \dot{x}^{2}\right) d t
$$

subject to the constraints

$$
\begin{aligned}
& x(0)=6 \\
& x(8)=\text { free }
\end{aligned}
$$

3) Calculus of Variations: You are to build a road from point a) to point b). The cost per unit distance of the road is proportional to the distance from origin

$$
J=\int_{a}^{b} \sqrt{x^{2}+y^{2}} \sqrt{1+\dot{y}^{2}} \cdot d x
$$

Determine the differential equations that the solution must satisfy (don't solve - it's kind of nasty).
4) Optimal Control: Given the following cost function and constraing:

$$
\begin{aligned}
& J=\int\left(x^{2}+4 u^{2}\right) d t \quad \dot{x}=-2 x+3 u \\
& F=x^{2}+4 u^{2}+m(-2 x+3 u-\dot{x})
\end{aligned}
$$

Determine the three differential equations that the optimal solution must satisfy:
(1) $\quad F_{x}-\frac{d}{d t}\left(F_{\dot{x}}\right)=0$
(2) $F_{u}-\frac{d}{d t}\left(F_{\dot{u}}\right)=0$
(3) $\quad F_{m}-\frac{d}{d t}\left(F_{\dot{m}}\right)=0$

Determine the optimal path for $\mathrm{x}(\mathrm{t})$, subject to

$$
\begin{aligned}
& x(0)=6 \\
& x(8)=4
\end{aligned}
$$

5) Find a feedback control law so that the following system:

$$
\begin{aligned}
& s X=\left[\begin{array}{ccc}
-2 & 1 & 0 \\
1 & -2 & 1 \\
0 & 1 & -1
\end{array}\right] X+\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] U \\
& Y=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] X
\end{aligned}
$$

has the following step response: (your pick which method you use)
Give

- The method you used (pole placement, LQR, LQG/LTR)
- Your resulting cotrol law, and
- The step response of your closed-loop system

Note: matlab is encouraged for this problem.

