ECE 463/663 - Test \#3: Name

Calculus of Variations. Optimal Control. Spring 2020
Open Book, Open Notes. Calculators, Matlab, Internet all permitted - just not other people.
Please sign if possible (i.e. you worked alone):
No Aid Given Received Observerd: \qquad

Calculus of Variations: Fixed endpoints

1) Find the function which minimizes the following funcitonal:

$$
J=\int_{0}^{8}\left(2 x^{2}+3 \dot{x}^{2}\right) d t
$$

subject to the constraints

$$
\begin{aligned}
& \mathrm{x}(0)=6 \\
& \mathrm{x}(8)=4 \\
& F=2 x^{2}+3 \dot{x}^{2} \\
& \frac{d}{d t}\left(F_{\dot{x}}\right)-F_{x}=0 \\
& \frac{d}{d t}(6 \dot{x})-(4 x)=0 \\
& 6 \ddot{x}-4 x=0 \\
& \left(6 s^{2}-4\right) X=0
\end{aligned}
$$

$$
s= \pm 0.8165
$$

$$
x(t)=a e^{0.8165 t}+b e^{-0.8165 t}
$$

Plug in the endpoints
$x(0)=6=a+b$
$x(8)=4=686.7516 a+0.0015 b$
$A=[1,1 ; \exp (8 * 0.8165), \exp (-8 * 0.8165)]$
$B=[6 ; 4]$
$C=\operatorname{inv}(A) * B$
0.0058
5.9942
$x(t)=0.0058 e^{0.8165 t}+5.9942 e^{-0.8165 t}$
2) Calculus of Variations: Free Endpoint. Find the function which minimizes the following funcitonal:

$$
J=\int_{0}^{2}\left(2 x^{2}+3 \dot{x}^{2}\right) d t
$$

subject to the constraints

$$
\begin{aligned}
& x(0)=6 \\
& x(8)=\text { free }
\end{aligned}
$$

From problem \#1

$$
\begin{aligned}
& F=2 x^{2}+3 \dot{x}^{2} \\
& s= \pm 0.8165 \\
& x(t)=a e^{0.8165 t}+b e^{-0.8165 t}
\end{aligned}
$$

Plugging in the endpoints

$$
\begin{aligned}
& x(0)=6 \\
& F_{\dot{x}}(8)=6 \dot{x}(8)=0 \\
& \dot{x}=0.8165 a e^{0.8165 t}-0.8165 b e^{-0.8165 t} \\
& 560.748 a-0.0012 b=0 \\
& \\
& \begin{array}{l}
A=[1,1 ; 0.8165 * \exp (8 * 0.8165),-0.8165 * \exp (-8 * 0.8165)] \\
B=[6 ; 0] \\
\mathrm{C}=\operatorname{inv}(\mathrm{A}) * \mathrm{~B} \\
\\
0.000012721174735 \\
5.999987278825266
\end{array} \\
& \quad x(t)=0.0000127 e^{0.8165 t}+5.9999872 e^{-0.8165 t}
\end{aligned}
$$

3) Calculus of Variations: You are to build a road from point a) to point b). The cost per unit distance of the road is proportional to the distance from origin

$$
J=\int_{a}^{b} \sqrt{x^{2}+y^{2}} \sqrt{1+\dot{y}^{2}} \cdot d x
$$

Determine the differential equations that the solution must satisfy (don't solve - it's kind of nasty).

$$
\begin{aligned}
& F=\sqrt{x^{2}+y^{2}} \sqrt{1+\dot{y}^{2}} \\
& \frac{d}{d x}\left(F_{\dot{y}}\right)-F_{y}=0 \\
& \frac{d}{d x}\left(\frac{\dot{y} \sqrt{x^{2}+y^{2}}}{\sqrt{1+\dot{y}^{2}}}\right)-\left(\frac{y \sqrt{1+\dot{y}^{2}}}{\sqrt{x^{2}+y^{2}}}\right)=0 \\
& \left(\frac{\ddot{y} \sqrt{x^{2}+y^{2}}}{\sqrt{1+\dot{y}^{2}}}\right)+\left(\frac{\dot{y}(x+y \dot{y})}{\sqrt{x^{2}+y^{2}} \sqrt{1+\dot{y}^{2}}}\right)-\left(\frac{\dot{y}^{2} \ddot{y} \sqrt{x^{2}+y^{2}}}{\left(1+\dot{y}^{2}\right)^{3 / 2}}\right)-\left(\frac{y \sqrt{1+\dot{y}^{2}}}{\sqrt{x^{2}+y^{2}}}\right)=0
\end{aligned}
$$

4) Optimal Control: Given the following cost function and constraing:

$$
\begin{aligned}
& J=\int\left(x^{2}+4 u^{2}\right) d t \quad \dot{x}=-2 x+3 u \\
& F=x^{2}+4 u^{2}+m(-2 x+3 u-\dot{x})
\end{aligned}
$$

Determine the three differential equations that the optimal solution must satisfy:
(1)

$$
\begin{aligned}
& \frac{d}{d t}\left(F_{\dot{x}}\right)-F_{x}=0 \\
& \frac{d}{d t}(-m)-(2 x-2 m)=0 \\
& -\dot{m}-2 x+2 m=0
\end{aligned}
$$

(2) $\frac{d}{d t}\left(F_{\dot{u}}\right)-F_{u}=0$

$$
(0)-(8 u+3 m)=0
$$

(3) $\frac{d}{d t}\left(F_{\dot{m}}\right)-F_{m}=0$

$$
(0)-(-2 x+3 u-\dot{x})=(
$$

Determine the optimal path for $\mathrm{x}(\mathrm{t})$, subject to

$$
\begin{aligned}
& x(0)=6 \\
& x(8)=4 \\
& m=-\frac{8}{3} u \\
& 2 x-2 m+\dot{m}=0 \\
& 2 x+\frac{16}{3} u-\frac{8}{3} \dot{u}=0 \\
& 3 x+8 u-4 \dot{u}=0 \\
& 3 x=(4 s-8) U \\
& U=\left(\frac{3}{4 s-8}\right) x
\end{aligned}
$$

$$
\begin{aligned}
& -2 x+3 u-\dot{x}=0 \\
& (-2-s) X+3\left(\left(\frac{3}{4 s-8}\right) x\right)=0 \\
& (4 s-8)(-2-s) X+9 X=0 \\
& \left(-4 s^{2}-8 s+8 s+16+9\right) X=0 \\
& \left(-4 s^{2}+25\right) X=0 \\
& s= \pm \sqrt{\frac{25}{4}}= \pm 2.500 \\
& x(t)=a e^{-2.5 t}+b e^{2.5 t}
\end{aligned}
$$

Plug in the endpoints

$$
\begin{aligned}
& x(0)=6=a+b \\
& x(8)=4=a e^{-16}+b e^{16} \\
& a=5.999999991755385 \\
& b=0.000000008244614 \\
& x(t) \approx 6 e^{-2.5 t}
\end{aligned}
$$

5) Find a feedback control law so that the following system:

$$
\begin{aligned}
& s X=\left[\begin{array}{ccc}
-2 & 1 & 0 \\
1 & -2 & 1 \\
0 & 1 & -1
\end{array}\right] X+\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] U \\
& Y=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] X
\end{aligned}
$$

has the following step response: (your pick which method you use)
Give

- The method you used (pole placement, LQR, LQG/LTR)
- Your resulting cotrol law, and
- The step response of your closed-loop system

Note: matlab is encouraged for this problem.

The settling time is 4 seconds
The overshoot is 10%
The damping ratio is 0.5912
The angle is 53.76 degrees

$$
s=-1 \pm j 1.36
$$

```
A4 = [A, 0*B ; C, 0]
```

-2	1	0	0
1	-2	1	0
0	1	-1	0
1	0	0	0

B4 = [B; 0];
$\mathrm{C} 4=[\mathrm{C}, 0]$;
$\mathrm{K} 4=\operatorname{lqr}(\mathrm{A} 4, \mathrm{~B} 4, \operatorname{diag}([0,0,0,10]), 1)$
Kx Kz
$\begin{array}{lllll}K 4 & 1.3684 & 0.5109 & 0.2093 & 3.1623\end{array}$
$\mathrm{G} 4=\mathrm{ss}(\mathrm{A} 4-\mathrm{B} 4 * \mathrm{~K} 4, \mathrm{~B} 4 \mathrm{r}, \mathrm{C} 4,0)$;
$\mathrm{y}=\operatorname{step}(\mathrm{G4}, \mathrm{t})$;
plot(t,y)

Solution \#2: Let fminsearch find Q:

```
function [ J ] = Prob5( Z )
Q = diag(Z);
R = 1;
A = [-2,1,0;1,-2,1;0,1,-1];
B = [1;0;0];
C = [1,0,0];
A4 = [A, 0*B ; C, 0];
B4 = [B ; 0];
B4r = [0*B ; -1];
C4 = [C, 0];
K4 = lqr(A4, B4, Q, R);
t = [0:0.01:5]';
G4 = ss(A4-B4*K4, B4r, C4, 0);
y = step(G4, t);
Gd = tf(2.84,[1,2,2.84]);
Yd = step(Gd, t);
E = Yd - y;
J = sum(E.^2);
plot(t,y,'b',t,Yd,'r');
pause(0.01);
end
```

Result:

```
[Z,e] = fminsearch('Prob5',[0,0,0,1])
Z = -5.4824 -2.6185 6.1926 8.9260
e = 0.0022
K4 = 0.2962 0.3898 0.4378 2.9876
```


Desired Reponse (red) and Actual Response (blue)

