ECE 463/663 - Homework \#3

Canonical Forms, Similarity Transforms, LaGrangian Dynamics, Controllability. Due Monday, Feb 1st
Please make the subject "ECE 463 HW\#3" if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

Problem 1-3) For the system

$$
Y=\left(\frac{20(s+6)}{(s+1)(s+7)(s+10)}\right) X
$$

1) Express this system in controller canonical form. (Give the A, B, C, D matrices)
2) Express this system in cascade form
3) Express this system in Jordan (diagonal) form
4) Assume a system's dynamics are

$$
\begin{aligned}
& {\left[\begin{array}{l}
s V_{1} \\
s V_{2} \\
s V_{3}
\end{array}\right]=\left[\begin{array}{ccc}
-5 & 0 & 0 \\
1 & -10 & 0 \\
0 & 1 & -15
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right]+\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] V_{0}} \\
& Y=V_{3}
\end{aligned}
$$

Express these dynamic with the change in variable

$$
\left[\begin{array}{l}
Z_{1} \\
Z_{2} \\
Z_{3}
\end{array}\right]=\left[\begin{array}{c}
V_{3} \\
V_{2}-2 V_{3} \\
V_{1}-5 V_{2}+5 V_{3}
\end{array}\right]
$$

LaGrangian Dynamics

A 1 kg ball is rolling in a bowl with the shape

$$
y=1-\cos \left(\frac{x}{2}\right)
$$

6) Determine the kinetic and potential energy of this ball as a function of x : Gravity is in the $-y$ direction.
7) Determine the dynamics for this ball as it rolls in the bowl

