ECE 463/663 - Homework #5

Full State Feedback. Due Monday, February 22nd

- 1) Write a Matlab m-file which is passed
 - The system dynamics (A, B),
 - The desired pole locations (P)

and then returns the feedback gains, Kx, so that roots(A - B Kx) = P

function [Kx] = ppl(A, B, P)

Problems 2-4) Assume the following dynamic system:

	-10.5	5	0	0	0		5	
	5	-10.5	5	0	0		0	
sX =	0	5	-10.5	5	0	X +	0	U
	0	0	5	-10.5	5		0	
	0	0	0	5	-5.5		0	
$Y = \begin{bmatrix} \\ \end{bmatrix}$	0000	1]X	-					

2) Find the feedback control law of the form

$$U = K_r R - K_x X$$

so that

- The DC gain is 1.000 and
- The closed-loop poles are at {-3, -4, -5, -6, -7}

Plot

- The resulting closed-loop step reponse, and
- The resulting input, U

Note: In Matlab, to plot the output (blue) and input (red), use the following commands:

```
G2 = ss(A-B*Kx, B*Kr, [C ; -Kx], [D ; Kr]);
t = [0:0.01:5]';
y2 = step(G2,t);
plot(t,y2(:,1),'b',t,y2(:,2),'r')
xlabel('Time (seconds)');
```

- 3) Repeat problem #2 but find Kx and Kr so that
 - The DC gain is 1.000 and
 - The closed-loop dominant pole is at s = -3 and the other four poles don't move

Plot

- The resulting closed-loop step reponse, and
- The resulting input, U
- 4) Repeat problem #2 but find Kx and Kr so that
 - The DC gain is 1.000
 - The 2% settling time is 2 seconds, and
 - There is 5% overshoot for a step input.

Plot

- The resulting closed-loop step reponse, and
- The resulting input, U