ECE 463/663 - Homework #7

Servo Compensators. Due Monday, March 8th

The dynamics of a Ball and Beam System (homework set #4) with a disturbance are

r e			0 0	0 0	1 0	0	Γ Γ θ		0	-	0]
s i e	=	=	0 -1.96	-7 0	0 0	0 0	r İ	÷	$\begin{array}{c} 0\\ 0.4 \end{array} \right ^{I+}$	0 0.4	d	

Full-State Feedback with Constant Disturbances

1) For the nonlinear simulation, use the feedback control law you computed in homework #6

- With R = 1 and the mass of the ball = 0.5kg (same result you got for homework #6), and
- With R = 1 and the mass of the ball increased to 0.6kg

(i.e. a constant disturbance on the system due to the extra mass of the ball)

Servo Compensators with Constant Set-Points

- 2) Assume a constant disturbance and/or a constant set point. Design a feedback control law that results in
 - The ability to track a constant set point (R = constant)
 - The ability to reject a constant disturbance (d = constant),
 - A 2% settling time of 6 seconds, and
 - No overshoot for a step input.
- 3) For the linear system, plot the step response
 - With respect to a step change in R, and
 - With respect to a step change in d
- 4) Implement your control law on the nonlinear ball and beam system
 - With R = 1 and the mass of the ball being 0.5kg, and
 - With R = 1 and the mass of the ball being 0.6kg

Servo Compensators with Sinulsoidal Set-Points

- 5) Assume a 1 rad/sec disturbance and/or set point (R). Design a feedback control law that results in
 - The ability to track a constant set point (R = sin(t))
 - The ability to reject a constant disturbance (d = sin(t)),
 - A 2% settling time of 6 seconds, and
 - No overshoot for a step input. the input is a sine wave, so the overshoot for a step input doesn't matter
- 6) For the linear system, plot the response
 - With R(t) = sin(t), and
 - With d(t) = sin(t)
- 7) Implement your control law on the nonlinear ball and beam system
 - With R = sin(t) and the mass of the ball being 0.5kg (nominal), and
 - With R = sin(t) and the mass of the ball being 0.6kg (ball has an extra 0.1kg)