ECE 463/663 - Test \#3: Name

Calculus of Variations. Optimal Control. Spring 2021
Open Book, Open Notes. Calculators, Matlab permitted - just not other people.

Calculus of Variations: Fixed endpoints

1) Find the function which minimizes the following funcitonal:

$$
J=\int_{0}^{5}\left(2 x^{2}+10 \dot{x}^{2}\right) d t
$$

subject to the constraints

$$
\begin{aligned}
& x(0)=6 \\
& x(5)=4
\end{aligned}
$$

Solve the Euler LaGrange equation

$$
\begin{aligned}
& \frac{d}{d t}\left(F_{\dot{x}}\right)-F_{X}=0 \\
& \frac{d}{d t}(20 \dot{x})-(4 x)=0 \\
& 20 \ddot{x}-4 x=0
\end{aligned}
$$

using LaPlace notation

$$
\begin{aligned}
& \left(20 s^{2}-4\right) X=0 \\
& s= \pm \sqrt{\frac{1}{5}}= \pm 0.4472
\end{aligned}
$$

meaning

$$
x(t)=a e^{0.4472 t}+b e^{-0.4472 t}
$$

Plugging in the endpoints

$$
\begin{aligned}
& x(0)=6=a+b \\
& x(5)=4=9.3558 a+0.1069 b
\end{aligned}
$$

solving

```
>> A = [1,1 ; exp(0.4472*5),exp(-0.4472*5)]
A =
        1.0000 1.0000
    9.3558 0.1069
>> ab = inv(A) * [6;4]
a 0.3631
b 5.6369
x(t)=0.3631}\mp@subsup{e}{}{0.4472t}+5.6369\mp@subsup{e}{}{-0.4472t
```

2) Calculus of Variations: Free Endpoint.

Find the function which minimizes the following funcitonal:

$$
J=\int_{0}^{5}\left(2 x^{2}+10 \dot{x}^{2}\right) d t
$$

subject to the constraints

$$
\begin{aligned}
& x(0)=6 \\
& x(5)=\text { free }
\end{aligned}
$$

This will have the same solution as problem \#1

$$
x(t)=a e^{0.4472 t}+b e^{-0.4472 t}
$$

Left endpoint:

$$
x(0)=6=a+b
$$

Right endpoint:

$$
\begin{aligned}
& F_{\dot{x}}=0 \\
& \dot{x}=0 \\
& \dot{x}(t)=0.4472 a e^{0.4472 t}-0.4472 b e^{-0.4472 t} \\
& \dot{x}(5)=0=4.1839 a-0.0478 b
\end{aligned}
$$

Solving

```
>> A = [1,1 ; 0.4472* exp(5*0.4472),-0.4472* exp (-0.4472*5)]
    1.0000 1.0000
    4.1839 -0.0478
>> ab = inv(A)*[6;0]
a 0.0678
b 5.9322
```


3) Optimal Control: Given the following cost function:

$$
J=\int\left(2 x^{2}+10 u^{2}\right) d t
$$

subject to the constraint

- $\dot{x}=0.2 x+u \quad$ (unstable)
- $x(0)=6$
- $x(5)=4$

Solution: First, set up the functional:

$$
F=x^{2}+5 u^{2}+m(\dot{x}-0.2 x-u)
$$

Determine the three differential equations that the optimal solution must satisfy:
(1) $\frac{d}{d t}\left(F_{\dot{x}}\right)-F_{x}=0$

$$
\begin{aligned}
& \frac{d}{d t}(m)-(2 x-0.2 m)=0 \\
& \dot{m}-2 x+0.2 m=0
\end{aligned}
$$

(2) $\frac{d}{d t}\left(F_{\dot{u}}\right)-F_{u}=0$

$$
\begin{aligned}
& \frac{d}{d t}(0)-(10 u-m)=0 \\
& m=10 u
\end{aligned}
$$

(3) $\frac{d}{d t}\left(F_{\dot{m}}\right)-F_{m}=0$

$$
\begin{aligned}
& \frac{d}{d t}(0)-(\dot{x}-0.2 x-u)=0 \\
& u=\dot{x}-0.2 x
\end{aligned}
$$

Eliminate m: substitute (2) in to (1)

$$
10 \dot{u}-2 x+2 u=0
$$

Eliminate u : substitute (3) for u

$$
10(\ddot{x}-0.2 \dot{x})-2 x+2(\dot{x}-0.2 x)=0
$$

$$
10 \ddot{x}-2.4 x=0
$$

using LaPlace notation

$$
\begin{aligned}
& \left(s^{2}-0.24\right) X=0 \\
& s= \pm \sqrt{0.24}
\end{aligned}
$$

meaning

$$
x(t)=a e^{0.4899 t}+b e^{-0.4899 t}
$$

Determine the optimal path for $\mathrm{x}(\mathrm{t})$, subject to

$$
\begin{aligned}
& x(0)=6 \\
& x(5)=4
\end{aligned}
$$

Plugging in the endpoints

$$
\begin{aligned}
& x(t)=6=a+b \\
& x(5)=4=11.5826 a+0.0863 b
\end{aligned}
$$

Solving

```
>> A = [1,1 ; exp(0.4899*5),exp(-0.4899*5)]
        1.0000 1.0000
        11.5826 0.0863
>> ab = inv(A) * [6;4]
a 0.3029
b 5.6971
>>
```

giving

$$
x(t)=0.3029 \cdot e^{0.4899 t}+5.6971 \cdot e^{-0.4899 t}
$$

4) Optimal Control: Non-Quadratic Cost Function.

Find the optimal path, $\mathrm{x}(\mathrm{t})$, to minize the following cost function

$$
J=\int\left(x^{4}+5 u^{2}\right) d t
$$

subject to

$$
\dot{x}=0.2 x+u
$$

Solution: The functional becomes

$$
F=x^{4}+5 u^{2}+m(\dot{x}-0.2 x-u)
$$

Solving the three Euler LaGrange equations:
(1) $\frac{d}{d t}\left(F_{\dot{x}}\right)-F_{x}=0$

$$
\begin{aligned}
& \frac{d}{d t}(m)-\left(3 x^{3}-0.2 m\right)=0 \\
& \dot{m}-3 x^{3}+0.2 m=0
\end{aligned}
$$

(2) $\frac{d}{d t}\left(F_{\dot{u}}\right)-F_{u}=0$

$$
\frac{d}{d t}(0)-(10 u-m)=0
$$

$$
m=10 u
$$

(3) $\frac{d}{d t}\left(F_{\dot{m}}\right)-F_{m}=0$

$$
\begin{aligned}
& \frac{d}{d t}(0)-(\dot{x}-0.2 x-u)=0 \\
& u=\dot{x}-0.2 x
\end{aligned}
$$

Substitute (2) into (1)

$$
10 \dot{u}-3 x^{3}+2 u=0
$$

Substitute (3) for u

$$
\begin{aligned}
& 10(\ddot{x}-0.2 \dot{x})-3 x^{3}+2(\dot{x}-0.2 x)=0 \\
& 10 \ddot{x}-3 x^{3}-0.4 x=0 \\
& \ddot{x}=0.3 x^{3}+0.4 x
\end{aligned}
$$

This is a nonlienar differential equation. LaPlace notation doesn't help here.

Bonus: Find $\mathrm{x}(\mathrm{t})$ for problem \#4.
We know $\mathrm{x}(0)=6$. We don't know $\dot{\mathrm{x}}(0)$.

If you knew $x^{\prime}(0)$, you could solve for $x(t)$ using numerical integration. The correct initial condition is whatever causes the path to pass through the endpoint

$$
x(5)=4
$$

Create a cost function in matlab which

- Is passed dx(0)
- Integrates for 5 seconds, then
- Returns the error from $x(5)=4$

```
function [ J ] = Bonus( z )
dt = 0.01;
t = [0:dt:5]';
x = 0*t;
n = length(t);
x(1) = 6;
dx = z;
for i=2:n
    ddx = 0.3*(x(i-1))^3 + 0.4*x(i-1);
    dx = dx + ddx*dt;
    x(i) = x(i-1) + dx*dt;
    x(i) = min(x(i), 100);
    x(i) = max(x(i), -100);
end
plot(t,x);
ylim([0,10]);
xlim([0,5]);
pause(0.01);
J = (x(n) - 4)^2;
end
```

Optimize using fminsearch

```
>> [Z,e] = fminsearch('Bonus',-14.72)
z = -14.7797
e = 9.2588e-006
```


Optimal Path for $\mathrm{x}(\mathrm{t})$: Problem \#3 (magenta) and Problem \#4 (blue)

